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ABSTRACT

Large language models show impressive results at predicting structured text such
as code, but also commonly introduce errors and hallucinations in their output.
When used to assist software developers, these models may make mistakes that
users must go back and fix, or worse, introduce subtle bugs that users may miss
entirely. We propose Randomized Utility-driven Synthesis of Uncertain REgions
(R-U-SURE), an approach for building uncertainty-aware suggestions based on a
decision-theoretic model of goal-conditioned utility, using random samples from
a generative model as a proxy for the unobserved possible intents of the end user.
Our technique combines minimum-Bayes-risk decoding, dual decomposition, and
decision diagrams in order to efficiently produce structured uncertainty summaries,
given only sample access to an arbitrary generative model of code and an optional
syntax tree parser. We demonstrate R-U-SURE on three developer-assistance tasks,
and show that it leads to more useful uncertainty estimates than per-token probabil-
ity baselines without requiring model retraining or fine-tuning. (An expanded ver-
sion of this work is available at https://arxiv.org/abs/2303.00732.)

1 INTRODUCTION

Large language models have demonstrated remarkable abilities for generating both natural language
(Brown et al., 2020; Chowdhery et al., 2022) and source code (Svyatkovskiy et al., 2020; Feng et al.,
2020; Chen et al., 2021; Li et al., 2022; Nijkamp et al., 2022). These abilities have led them to be
incorporated into a number of developer assistance tools and services, such as GitHub Copilot and
Tabnine. Unfortunately, when faced with novel or unpredictable situations, large language models
have a tendency to guess or “hallucinate” unwanted outputs (Maynez et al., 2020; Liu et al., 2021).
For software development, these guesses can slow development by requiring developers to spend
time verifying the suggestion and deleting any incorrect parts (Mozannar et al., 2022; Barke et al.,
2022; Upadhyaya et al., 2022), or worse, lead to undetected problems and less secure code (Pearce
et al., 2021). Compounding this issue is the presence of automation bias, an effect where users fail to
notice issues in outputs of automated systems (Madi, 2022; Cummings, 2004; Lyell & Coiera, 2017).

An interesting property of generated code suggestions is that some parts of the user’s intent (e.g.
control flow and API boilerplate) can be predicted more easily than others (e.g. edge-case behavior or
the signatures of novel functions). User interaction studies of ML coding assistants have revealed that
software engineers would benefit if suggestions included indicators of model uncertainty (Mozannar
et al., 2022; Weisz et al., 2021) or user-fillable “holes” (Barke et al., 2022). However, Vasconcelos
et al. (2022) have found that per-token conditional probability estimates are insufficient to provide
good predictions of necessary edits. Guo et al. (2021) propose a top-down generative model of
code that uses a grammar to generate completions containing holes, but these holes must align with
grammar nonterminals and cannot identify uncertain subregions within lists of expressions.

In this work, we show that there is a way to harness the remarkable capabilities of pretrained language
models to both generate high-quality code suggestions and also produce concise representations of
their own uncertainty, without requiring any fine-tuning. Our key insight is that, since language
models of code are trained to predict file contents from context, we can reinterpret the samples from
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import collections
import json
from typing import List

TokenWithConfidence = collections.namedtuple('TokenWithConfidence',
('token', 'confidence'))

def render_suggestion(suggestion: List[TokenWithConfidence]) -> str:
# (... definition omitted ...)

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(suggestion)
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"""Visualizing trends using SQLite and Matplotlib
"""
import sqlite3
from matplotlib import pyplot as plt

# Open the database
conn = sqlite3.connect('data/budget.db')
c = conn.cursor()

# Get the data
c.execute('''SELECT date, SUM(budget)

FROM transactions
GROUP BY date''')

data = c.fetchall()

# Close the database
conn.close()

# Create the plot
fig, ax = plt.subplots()
ax.plot(data)

# Show it
plt.show()
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Figure 1: Given a partial file as context (bolded black code) and outputs from a fixed language model
(blue code), our approach can be used to predict parts of generated programs that may need editing
(left, orange background), adjust completion length to avoid uncertain parts (middle, red text), or
identify the most relevant statements from a larger prediction (right, green background), by searching
over a space of uncertainty-augmented suggestions S. (See Appendix A for details.)

a well-trained language model as plausible goal states for the user. We can then use these samples to
estimate how useful our suggestions would be for a user whose intent we do not know, and to modify
those suggestions to make them useful across a diverse set of possible user intents.

As a concrete motivating example, consider the task of code completion under uncertainty, and
suppose we wish to highlight specific regions of a completion suggestion to help end-users identify
the parts of the suggestion they need to change, as shown on the left of Figure 1. To do this, we can
define a space S of highlighted suggestions, where each token is tagged as either SURE or UNSURE.
We can then approximate how helpful a suggestion s ∈ S would be to a user with a hypothetical
goal g using a confidence-adjusted edit distance between s and g, assuming that UNSURE tokens will
be double-checked by the user and thus be easier to edit if wrong but also save less time (and thus
be less useful) than SURE tokens if they turn out to be correct. If we can find a set of annotations
that has high utility across many samples g(k) drawn from a language model, then as long as the
language model is well calibrated, the UNSURE annotations should provide a summary of the model’s
uncertainty that is similarly useful for accomplishing the user’s unknown goal g.

Our contributions are as follows:

• We describe a utility-driven framework (summarized in Figure 2) for producing uncertainty-
aware suggestions given only sample-access to an arbitrary language model, by interpreting its
samples as plausible user intents and solving a combinatorial optimization problem to identify
the highest-utility suggestion, extending minimum Bayes risk decoding (Eikema & Aziz, 2020).
• We show how to apply dual decomposition (Rush & Collins, 2012; Lange & Swoboda, 2021)

to a novel decision diagram representation of edit-distance-based utility functions, yielding
an efficient coordinate-descent optimizer and building a bridge between recent advances in
language model decoding and combinatorial optimization.
• We construct a number of variants for our utility functions, enabling them to incorporate tree

structure from an error-tolerant syntax-tree parser, account for both deletions and insertions, and
respond to uncertainty by either annotating or removing the uncertain parts.
• We demonstrate our approach across three developer-assistance-inspired tasks (visualized in

Figure 1), and show that our approach yields a better tradeoff between correct and incorrect
predictions than heuristics based on cumulative or per-token probability.

2 PROBLEM STATEMENT

We tackle the problem of providing contextual, uncertainty-aware suggestions to assist users of
ML-integrated tools with unobserved goals, with a particular focus on assisting software development.
As we discuss in Section 1, there may not be enough information to fully determine the user’s intent
given the context. Our strategy is thus to augment the space of possible suggestions to account for the
uncertainty in the user’s intent in an explicit way. For instance, we can insert visual markers into a
code-completion suggestion to draw attention to the parts of the suggestion that the user may wish to
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Figure 2: Overview of the R-U-SURE system.

change. By doing so, we can avoid silently introducing incorrect behavior, and produce a suggestion
that is useful regardless of what intent the user actually has.

We formalize this intuition using a decision theoretic framework. We let X be a set of contexts (e.g.
the current partially-written code file and any other relevant IDE state) and G be a set of goals (e.g.
the desired final state of the code file), with the specific context x ∈ X and goal g ∈ G of each user
being distributed according to some unknown distribution p(X = x,G = g). We further specify a set
S of possible system suggestions along with a utility model u : G × S → R, where u(g, s) measures
(or approximates) how useful suggestion s is toward accomplishing a specific goal g.

Consider again the motivating example introduced in Section 1. Letting Σ be a set of tokens, we can
define G = Σ∗ as the set of possible token sequences g = [g1, g2, . . . , gM ] ∈ G the user may wish to
write, with each gi ∈ Σ. We can then define S = (Σ× C)∗ as a set containing uncertainty-annotated
suggestions s = [(s1, c1), (s2, c2), . . . , (sN , cN )] ∈ S, where each suggestion is a sequence of
pairs of tokens si ∈ Σ and confidence indicators ci ∈ C = {SURE,UNSURE}. Finally, we can
define u(g, s) based on the edit distance from s to g, with a smaller penalty for deleting incorrect
UNSURE tokens but a smaller reward for keeping correct ones. An example of how such a u might be
implemented using dynamic programming is shown in Algorithm 1 of Figure 3; in Section 3.4 we
discuss how we extend this idea to account for program syntax trees and inserted code.

More generally, we can think about each s ∈ S as a possible suggestion our system could show, and
use u to estimate the usefulness of that action for a particular goal. For a given context x ∼ p(X),
we wish to find a concrete suggestion s∗ which is as useful as possible, e.g. that maximizes u(g, s∗),
in the presence of uncertainty about g. If we had access to the true distribution p(G|X), we might
seek the suggestion that is most useful on average over the intents that this user might have:

s∗ = arg max
s∈S

Eg∼p(G|X=x)[u(g, s)] (1)

This choice is also known as the minimum Bayes risk suggestion, as it minimizes the expected risk
(negative utility) of the action under the posterior p(G|X) (Eikema & Aziz, 2020).

3 APPROACH

Unfortunately, we do not have access to the distribution in Equation (1). We now present Randomized
Utility-driven Synthesis of Uncertain REgions (R-U-SURE), a tractable procedure for approximating
s∗ by combining samples from a model using combinatorial optimization.

3.1 APPROXIMATING TRUE INTENTS WITH MODEL SAMPLES

We start by assuming that we have access to a well-calibrated generative model p̃θ(G|X) that predicts
a distribution of plausible goals in a given context. For instance, p̃θ(G|X) could be a language model
trained to produce completions of a partial file. Previous work has shown that samples from such
a model can give a good proxy for true uncertainty in a generative model as long as the model is
well calibrated (Eikema & Aziz, 2020; Ott et al., 2018). As such, we can treat the model p̃θ(G|X) as
a proxy for the true distribution p(G|X), and search for s̃∗ = arg maxs∈S Eg∼p̃θ(G|X=x)[u(g, s)].
instead. Intuitively, if we find a suggestion s̃∗ that is reliably useful across the high-likelihood goals
under p̃θ(G|X = x), and any sample from p should also have high likelihood under p̃θ (e.g. due to
training with the cross-entropy objective), we can hope that such a suggestion is also useful for the
true user intent (a sample from p(G|X = x)).
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It is still intractable to exactly find s̃∗, due to the exponentially large set of possible user intents and
possible suggestions. We thus use a Monte-Carlo estimate over a finite number of samples from the
model, similar to the minimum Bayes risk decoding approximation proposed by Eikema & Aziz
(2020), and also search over a restricted space derived from one of the samples:

s̃ = arg max
s∈S(g(1))

1

K

K∑
k=1

u(g(k), s), (2)

where g(k) ∼ p̃θ(G|X = x) are independent samples from the model, and S(g(1)) is a set of
suggestions built out of one of the model outputs g(1) (which we call the suggestion prototype).
For example, for the space of confidence-aware suggestions described in Section 2, we can set
S(g(1)) = {[(g(1)1 , c1), . . . , (g

(1)
N , cN )] : ci ∈ C}, which takes the suggestion tokens si from g(1) and

just searches over the confidence markers ci.

3.2 DECOMPOSING INTO INDEPENDENT SUBPROBLEMS

A standard technique for optimizing sums over combinatorial discrete spaces such as S(g(1)) is dual
decomposition. We give a brief overview of dual decomposition as it applies to our problem; see
Sontag et al. (2011) and Rush & Collins (2012) for an in-depth introduction. We start by embedding
the search space (here S(g(1))) into the space of binary vectors b ∈ {0, 1}d, rewriting our utility
function u(g(k), s) as a function w(k)(b) of those binary vectors, and then reinterpreting the problem
arg maxb

∑K
k=1 w

(k)(b) as a constrained optimization problem over copies of b, i.e. as

U = max
b(1:K)∈{0,1}d

K∑
k=1

w(k)(b(k)) such that b(1) = b(2) = · · · = b(K). (3)

We next use a set of Lagrange multipliers λ(k) ∈ Rd with
∑
k λ

(k) = 0 to relax the constraints:

W (k)(b(k),λ(k)) = w(k)(bk) + λ(k)·b(k), L(λ(1:K)) =

K∑
k=1

max
b(k)

W (k)(b(k),λ(k)) ≥ U. (4)

This is known as the Lagrangian dual problem: L(λ(1:K)) is a convex function of λ and an upper
bound on U , and our goal is to find arg minλ L(λ(1:K)). If we can find λ(1:K) such that the b(k)
agree in Equation (4), the bound is tight and we recover the solution to Equation (3). (Note that this
bound is not necessarily tight: we may have a nonzero duality gap minλ L(λ)− U > 0.) The key
advantage of this formulation is that the only interaction between terms in the sum is the constraint∑
k λ

(k) = 0, which we can interpret as “messages” between subproblems. We can thus alternate
between independently optimizing over the b(k) for each W (k) term, and adjusting the λ(k) to tighten
the dual bound by increasing agreement of the b(k) (“message-passing”).

One efficient optimization algorithm of this form is “max-marginal-averaging”, a version of coordinate
descent described by Lange & Swoboda (2021). It works by iterating through variable indices i,
computing the max-marginals m(k)

i:=β = max
b(k) s.t. b(k)i =β

W (k)(b(k),λ(k)) for β ∈ {0, 1}, (i.e. the

utility of fixing b(k)i to β = 0 or β = 1), setting δ(k)i = m
(k)
i:=1 −m

(k)
i:=0, and then updating

λ
(k)
i ← λ

(k)
i − δ

(k)
i +

1

K

∑
k′

δ
(k′)
i (5)

This update ensures δ(k)i = δ
(k′)
i for all k, k′, which implies that the same choice (b(k)i := 0 or

b
(k)
i := 1) is optimal for every k and by the same amount. This is a coordinate descent update for
L(λ(1:K)) with respect to the λ(1:K)

i (Lange & Swoboda, 2021; Werner et al., 2020), and applying it
produces a monotonically decreasing upper bound on U .

3.3 EXPANDING UTILITY FUNCTIONS TO DECISION DIAGRAMS

It remains to show how to efficiently compute the updates in Equation (5) corresponding to our
objective in Equation (2). Our key idea is to focus on a family of utility functions that can be
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Algorithm 1 Sequence edit-distance utility u(g, s)

Input: g = [g1, . . . , gM ], s = [(s1, c1), . . . , (sN , cN )], α, β
Initialize T i

j to −∞ for 0 ≤ i ≤M, 0 ≤ j ≤ N
T 0
0 ← 0.0 # Base case for dynamic programming

for i = 0 to M , j = 0 to N do
if i > 0 and j > 0 and gi = sj then # Match sj and gi

if cj = SURE then T i
j ← max(T i

j , T
i−1
j−1 + 1)

if cj = UNSURE then T i
j ← max(T i

j , T
i−1
j−1 + α)

end if
if i > 0 then # Insert gi
T i
j ← max(T i

j , T
i−1
j + 0)

end if
if j > 0 then # Delete sj

if cj = SURE then T i
j ← max(T i

j , T
i
j−1 − 1)

if cj = UNSURE then T i
j ← max(T i

j , T
i
j−1 − β)

end if
end for
return TM

N

Algorithm 2 Decision diagram for w(k)(b)

Input: g(k) = [g1, g2, . . . , gM ], g(1) = [s1, s2, . . . , sN ], α, β
Initialize an empty decision diagram
Label node (0, 0) as >
for i = 0 to M , j = 0 to N do

if i > 0 and j > 0 and gi = sj then # Match sj and gi
Add edge (i− 1, j − 1)→ (i, j), weight 1, label bj := 0
Add edge (i− 1, j − 1)→ (i, j), weight α, label bj := 1

end if
if i > 0 then # Insert gi

Add edge (i− 1, j)→ (i, j), weight 0
end if
if j > 0 then # Delete sj

Add edge (i, j − 1)→ (i, j), weight −1, label bj := 0
Add edge (i, j − 1)→ (i, j), weight −β, label bj := 1

end if
end for
Label node (M,N) as ⊥
return the diagram

s1 = a s2 = b s3 = c

g
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Figure 3: Algorithm 1 shows a dynamic programming implementation of the utility function u(g, s)
described in Section 2, taking as input a target goal state g and a fixed suggestion s. UNSURE tokens
provide less utility (α) if kept (since the user must double-check them) but are also easier to delete (β)
if wrong, and we assign positive utility to correctly predicted tokens instead of penalizing inserts so
that an empty suggestion has zero utility. Algorithm 2 is an expanded version of this utility function
that enables simultaneously searching over the cj by building a decision diagram, as described in
Section 3.3. On the right, we show an example decision diagram obtained by running Algorithm 2
with g(1) = [a, b, c], g(k) = [a, c, b, d], α = 0.7 and β = 0.3, colored based on the algorithm steps.

computed using an edit-distance-like dynamic program, and rewrite them in a form that enables us to
simultaneously search over edit sequences, which are different for each subproblem, and confidence
annotations, which must be chosen consistently across all subproblems.

As an example of this transformation, Algorithm 1 shows how to compute an edit-distance-based
utility u(g, s) for a specific suggestion s and a specific vector of confidence annotations c, by
searching over possible alignments of s and g. Algorithm 2 then extends this to also search over
confidence annotations, by embedding both the sequence of edits and the sequence of confidence
annotations into a single binary decision diagram (BDD). Finding the maximum-utility path in this
diagram simultaneously computes both the optimal alignment between s and g and the optimal
confidence annotations ci, and we can reconstruct the confidence annotations by following the path
and setting ci = UNSURE whenever we encounter an edge labeled bi := 1.

Given such a BDD, we can compute the max-marginals m(k)
i:=β for a given variable bi and subproblem

k by traversing the diagram for subproblem k and separately considering paths that assign bi := 0

and bi := 1. The messages λ(k)
i can then be incorporated by modifying the costs of all edges

in subproblem k that assign bi := 1, which biases that subproblem’s search to prefer confidence
annotations that are consistent with the choices of other subproblems. We can then run a series
of max-marginal-averaging updates until L(λ(1:K)) stops improving, following Lange & Swoboda
(2021). See Appendix C for details on our efficient dynamic programming implementation.

3.4 EXTENDING THE UTILITY FUNCTION

Our method can be applied to any space of suggestions S and utility function u(g, s) that can be
efficiently represented as decision diagrams. We briefly summarize a number of extensions to the
basic utility function presented in Algorithm 1, which can be used to customize its behavior without
modifying the pretrained language model; see Appendix D for details.

Tree-structured edits. When data has a natural tree structure (e.g. an abstract syntax tree for a
program), we can incorporate this structure into u(g, s) by requiring that edits respect the tree
hierarchy. In particular, we implement a recursive utility function under which entire subtrees are
either deleted, inserted, or recursively matched with subtrees at the same depth.

Constraining locations of UNSURE regions. Similarly, we may have prior knowledge about which
tokens are appropriate to mark as UNSURE; for instance, we may want to ensure that UNSURE tokens
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align with parsed expressions in the syntax tree. We can enforce this by introducing new binary
decision variables that track where UNSURE regions start and stop, and including a “constraint BDD”
which ensures they start and stop in semantically-meaningful positions.

Adding localization and insertion penalties. Identifying which location to edit may be more difficult
than actually performing the edit, and it may be useful to identify locations at which more code must
be inserted even if all of the tokens in the suggestion are likely to be kept. To account for this, we can
introduce an additional “localization penalty” each time an edit starts, independent of the size of the
edit. This encourages our method to group edits into semantically meaningful chunks and to identify
locations where missing code may need to be inserted, as long as we allow small UNSURE regions to
be added in spaces between tokens.

Searching for prefixes. We may want to extract only a small portion of the model’s initial suggestion,
stopping once the uncertainty becomes too high. We can account for this by introducing new decision
variables that determine whether or not to truncate the suggestion at various points, and modifying u
to stop penalizing edits after the truncation point.

4 RELATED WORK

Due to space constraints, we focus here on only the most relevant related work; see Appendix B
for additional previous work. Sampling-based decoding strategies aiming to minimize Bayes risk
have been applied to both neural machine translation (Eikema & Aziz, 2020) and to code generation
(Li et al., 2022; Shi et al., 2022), generally using a utility function to select one sample from a
generated set. Paul & Eisner (2012) and Peng et al. (2015) use dual decomposition with n-gram
features to combine WFSAs, with applications to minimizing Bayes risk. Guo et al. (2021) propose
GRAMMFORMER, a generative model for code that iteratively expands nonterminal nodes of a syntax
tree and then inserts holes for unpredictable nodes, and is trained via a combination of random-order
pretraining and RL finetuning. In contrast, our approach requires only sample access to a pretrained
generative model, can adapt to different utility functions and suggestion types without retraining the
model, and can identify regions of uncertainty in both syntax trees and unstructured sequences (e.g.
docstrings) without aligning them to a syntax tree. Vasconcelos et al. (2022) found that visualizations
of predicted locations of edits are strongly preferred by users over individual token probabilities.
They used a separate model trained to predict edits for a specific coding problem; in contrast, our
technique can be used to produce this kind of visualization for any editing task without requiring
additional model training or supervision.

5 EXPERIMENTS

We evaluate our approach by applying it to three developer assistance tasks, each of which is
visualized in Figure 1. For all tasks, we generate suggestion prototypes and hypothetical intents
using a 5B-parameter decoder-only LM trained on 105B tokens of permissively-licensed open-source
code from GitHub, and parse them into trees using an error-tolerant bracket-matching pseudo-parser
(described in Appendix E). We compare our approach to a number of task-specific baselines, all of
which build suggestions s ∈ S(g(1)) from the same suggestion prototype, and evaluate how well each
method can predict the changes necessary to obtain the final code state from the dataset, measured by
our utility function as well as token accuracy.

5.1 LOCALIZING EDITS IN CODE SUGGESTIONS

Our first task uses R-U-SURE to insert confidence annotations around parts of code completion
suggestions that users are likely to edit. We configure our utility function similarly to Algorithm 1:
UNSURE tokens have lower utility if matched but lower penalties if deleted. We also enforce
hierarchical edits and syntactically-valid UNSURE regions and add extra localization penalties as
described in Section 3.4. To evaluate our approach, we assemble a collection of 5000 held-out code
files for each of the languages JAVA, JAVASCRIPT, C++ and PYTHON, and split them into (synthetic)
completion contexts c and ground truth intents g using three strategies. One such scheme is PYTHON
specific, so we obtain 45000 examples in total (see Appendix F for details). For each example, we
sample 31 completions from the language model, then select the sample with the highest likelihood
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Figure 4: Analysis of results for edit localization. Comparison of true and estimated utility for edit
localization task, as (a) a scatterplot and (b) a rank-histogram (Candille & Talagrand, 2005). (c) Mean
utility for our approach w.r.t the ground-truth user intent as a function of the number of samples used
in Equation (2), split by programming language. (d) Token level sensitivity / specificity trade-off
across methods; R-U-SURE (Region) dominates the baselines (and also EXAMPLE FRACTION
which marks a fixed fraction as UNSURE).

as the suggestion prototype, and use R-U-SURE to mark parts of the parsed tree as UNSURE. We
compare our approach to heuristics based on token probabilities, which insert UNSURE regions
around tokens whose conditional probability (TOKEN PROB) or total prefix probability (PREFIX
PROB) is below a threshold; we also try marking everything SURE, and marking the maximum
amount as UNSURE in our syntax-constrained space S(g(1)).

Utility
(relative)

Est. Util.
(relative)

F1 score
(for UNSURE)

ALL SURE ≡ 0 38.00 -
MAX UNSURE 81.83 106.08 12.74
TOKEN PR. 0.5 50.83 82.63 63.03
TOKEN PR. 0.7 58.42 88.89 64.38
TOKEN PR. 0.9 66.99 95.64 61.44
PREFIX PR. 0.5 83.33 108.52 41.92
PREFIX PR. 0.7 83.45 108.27 37.26
PREFIX PR. 0.9 83.08 107.61 29.53
OURS (Region) 84.42 113.82 72.14

Table 1: Edit-localization results.

Results are shown in Table 1; we report utility for the
true file contents and also utility estimated over the
31 combined samples (Est. Util.). We find that meth-
ods with high average utility on model samples also
achieve high average utility against the true file con-
tents, and a more detailed comparison of estimated
and true utilities in Figures 4a and 4b reveals that the
two are highly correlated for our suggestions. Fig-
ure 4c shows that utility also improves as we include
more samples in the system.

To give more insight and evaluate how well maximiz-
ing our utility function truly improves usefulness, we
reinterpret uncertainty region annotations as a binary
classification problem, with UNSURE tokens being
predictions of where users will edit. We compute the sensitivity (fraction of edited code correctly
marked UNSURE) and specificity (fraction of unedited code marked SURE) for all methods w.r.t.
ground truth, summarizing results with F1 scores in Table 1, and find that our approach is better at
identifying locations of edits than the baselines. We also investigate how these vary as we sweep over
the per-token utilities and costs of UNSURE tokens, obtaining the Pareto curve in Figure 4d.

5.2 SELECTING SUGGESTION LENGTHS

Utility Correct
chars

Incorrect
chars

1 LINE -10.91 16.85 27.76
2 LINES -12.68 24.30 36.98
4 LINES -19.85 33.75 53.59
8 LINES -37.75 43.97 81.72

TOKEN PROB 0.2 0.52 22.65 22.13
TOKEN PROB 0.3 0.69 20.45 19.76
TOKEN PROB 0.5 0.19 17.30 17.12
TOKEN PROB 0.7 -1.10 14.42 15.52

INTELLICODE 0.04 17.10 17.06
OURS (PREFIX) 7.00 38.81 31.81

OURS (PREFIX+REGION) 12.26 36.40 22.31

Table 2: Suggestion length results.

One common use of ML model suggestions for
both code and natural language applications is
to show inline grey “ghost text” suggestions
as users type in the editor, and allow users to
quickly accept the suggestion by pressing a key,
often “tab” (Svyatkovskiy et al., 2020; Barke
et al., 2022). In this case, showing longer correct
suggestions can accelerate developer productiv-
ity, but long incorrect suggestions can slow de-
velopers down (Barke et al., 2022).

To apply our approach to this setting, we search
over prefixes of the prototype suggestion using
the truncation variables described in Section 3.4,
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instead of inserting UNSURE annotations. We compare our approach to a number of heuristics:
predicting a fixed number of lines, predicting until we reach a low-probability token, and using
the heuristic described by Svyatkovskiy et al. (2020) (IntelliCode.). As shown in Table 2, our
approach achieves the highest utility and a good trade-off between correct and incorrect characters.
When we also allow R-U-SURE to mark some tokens UNSURE, and consider only SURE tokens as
correct/incorrect, this improves further.

5.3 API DISCOVERY

Utility Correct
tokens

Incorrect
tokens

NOVEL CALLS -1.39 1.18 3.04
ALL CALLS -1.39 1.18 3.04

ALL W/ LHS + ARGS -8.75 2.02 9.64
OURS (USEFUL CALLS) 5.10 3.56 2.10

Table 3: API call sequence results.

Even if there is not enough information to pro-
vide a useful completion suggestion at a specific
location, it may still be possible to extract useful
information from a generative model’s sugges-
tions. As an example of this, we use our method
to identify sequences of function calls that the
user is likely to write, even if the control flow
structures around these calls are not predictable;
this could be used to preemptively show docu-
mentation or type signatures.

We adapt our approach to this setting by extracting a sequence of function and method calls from the
model’s output, choosing S(g1) so that it selects a subset of these calls as SURE, and defining u(g, s)
to find the longest common subsequence between the desired calls in g and the selected calls. Since
we expect such suggestions to be used as an auxiliary aid rather than an inline suggestion, we set
the utility of correct predictions to be higher than the penalty for incorrect ones (e.g. selected calls
in s that were not used in g) and give a bonus for predicting tokens not seen before; we also assign
zero utility to unselected calls. We compare our approach against baselines which use all calls in
the file or which only predict calls that use identifiers that are not in the context. Results are shown
in Table 3; we again find that our approach has high utility and gives a favorable tradeoff between
correct and incorrect predictions.

6 DISCUSSION

We have demonstrated that R-U-SURE can flexibly incorporate uncertainty annotations into model
suggestions across a variety of developer-assistance tasks, and that these annotations lead to both
improved performance on our estimates of utility and also accurate predictions of the locations
of edits. Importantly, our approach does not require retraining or fine-tuning the base generative
language model, since it decouples the action (showing a suggestion) from the generative prediction
task (predicting the user’s intent).

A limitation of our approach is that the utility function must be efficiently decomposable into decision
diagrams. This is a good fit for edit-distance, and we believe the same principles could be extended to
support multiple confidence levels or suggested alternatives. However, more general types of utility
function (e.g. behavioral equivalence) may be difficult to approximate with our technique. We also
assume that the base generative model is well-calibrated, and that a modest number of samples from
it can summarize the possible edits required. It would be interesting to study how our system behaves
with less-calibrated models, and how this changes as the capacity of the base model grows.

Our current implementation of R-U-SURE runs on the CPU using Numba (Lam et al., 2015) and is
dominated by the time to build the decision diagrams, due to the generality of our utility function.
Although out of scope of this paper, we have explored distilling the outputs of R-U-SURE into a
learned model similar to Kuncoro et al. (2016) and Kadavath et al. (2022), which can then be queried
in real time with comparable accuracy to the original R-U-SURE system. Runtime could also be
improved by rewriting in a lower-level langauge, specializing the utility function to a specific task, or
using GPU acceleration (Abbas & Swoboda, 2021).

More broadly, we are excited by the potential to incorporate user interaction into minimum-Bayes-risk
objectives to mitigate harms of model hallucinations. We see our work as a step toward ML-powered
assistants that empower users and give appropriately conservative predictions in the presence of
uncertainty about user intent and the world at large.
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A EXAMPLE OUTPUTS OF R-U-SURE

In this section we give examples of the outputs produced by R-U-SURE.

(For these examples, we use an 8B-parameter decoder-only LM, a slightly larger model than used for
the main set of experiments, also trained on permissively-licensed open-source code from GitHub.
We emphasize that our approach is model-agnostic and can be combined with any generative model.)

import collections
import functools
import operator
import json
from typing import List

TokenWithConfidence = collections.namedtuple('TokenWithConfidence', ('token', 'confidence'))

def render_suggestion(suggestion: List[TokenWithConfidence]) -> str:
"""Renders confidence annotations for a suggestion.

Args:
suggestion: List of tokens and their confidence.

Returns:
Rendering of tokens with confidence.

"""
result = []
for token_with_conf in suggestion:
if token_with_conf.confidence == "sure":
result.append(token_with_conf.token)

else:
result.append("[" + token_with_conf.token + "]")

return "".join(result)

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestion.

"""
♦

return json.dumps(suggestion)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str:
"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

Figure 5: Full prompt and output for the example at the top of Figure 1. Note that the model has
identified the docstring style from the context, and our system can identify which of the words in the
docstring are boilerplate. Docstrings are represented as sequences of words and combined using our
edit distance utility function. The ‘�’ character denotes a location where additional statements might
be inserted.
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def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(suggestion)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) ->
str:

"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to a json string.

Args:
suggestion: List of tokens and their confidence.

Returns:
Rendering of tokens with confidence.

"""
return json.dumps(suggestion)

def suggestion_from_json(json_str: str) -> List[TokenWithConfidence]:
"""Creates a suggestion from a json string.

Args:
json_str: A json string.

Returns:
List of tokens and their confidence.

"""
return json.loads(json_str)

def suggestion_to_dict(suggestion: List[TokenWithConfidence]) -> dict:
"""Converts a suggestion to a dict.

Args:

def suggestion_to_json(suggestion: List[List[TokenWithConfidence]]) ->
str:

"""Renders a list of suggestions in JSON format.

Args:
suggestion: A list of lists of tokens and their confidences.

Returns:
Rendering of tokens with confidence.

"""
result = []
for tokens_with_conf in suggestion:

token_with_conf_json = {
'token': [],
'confidence': [],

}
for token_with_conf in tokens_with_conf:

token_with_conf_json['token'].append(token_with_conf.token)
token_with_conf_json['confidence'].append(

token_with_conf.confidence)
result.append(token_with_conf_json)

return

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Renders a suggestion as a JSON object."""
return json.dumps([token.token for token in suggestion])

def get_top_n(suggestions: List[List[TokenWithConfidence]], n: int) ->
List[List[TokenWithConfidence]]:

"""Returns the top n suggestions of a list of suggestions.

Args:
suggestions: List of suggestions for a single token.
n: Number of suggestions to return.

Returns:
A list of suggestions of size n, with the highest confidence

first.
"""
return sorted(suggestions, key=lambda s: len(s), reverse=True)[:n]

def join_suggestion(suggestion: List[List[TokenWithConfidence]],

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a list of tokens and their confidence to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the list.

"""
return json.dumps([dict(token=token_with_conf.token,

confidence=token_with_conf.confidence)
for token_with_conf in suggestion])

def json_to_suggestion(json: str) -> List[TokenWithConfidence]:
"""Parses a suggestion from a JSON string.

Args:
json: JSON representation of the list.

Returns:
List of tokens and their confidence.

"""
return [TokenWithConfidence(token=t["token"],

def suggestion_to_json(suggestion_list: List[List[TokenWithConfidence]])
-> str:

"""Renders a list of suggestions in json format.

Args:
suggestions_list: A list of suggestions to render.

Returns:
The list of suggestions as json string.

"""
return json.dumps(suggestion_list, default=lambda o: o.__dict__,

sort_keys=True, indent=2)

def _is_suggestion_list_equal(a: List[List[TokenWithConfidence]], b:
List[List[TokenWithConfidence]]) -> bool:

"""Checks if two lists of suggestions are equal.

Args:
a: First list of suggestions.
b: Second list of suggestions.

Returns:
True if the lists are equal, otherwise

Figure 6: Six of the hypothetical user intents g(1), g(2), . . . , g(6) for the example at the top of Figure 1,
generated by sampling from the pretrained model. Full context omitted; see Figure 5.
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Utility: 455.15 (vs. 590.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(suggestion)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str:
"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

Utility: 124.65 (vs. 71.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSONa json string.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representationRendering of the suggestiontokens with confidence.

"""
return json.dumps(suggestion)

def token_with_conf_to_json suggestion_from_json(json_str: str) -> List([token_with_conf:
TokenWithConfidence)] -> str:
"""ConvertsCreates a suggestion from a token and its confidence to JSONjson string.

Args:
token_with_conf: Token and its confidencejson_str: A json string.

Returns:
JSON representationList of the suggestiontokens and their confidence.

"""
return json.dumps(token_with_conf)loads(json_str)

def render_correction(correction: str) -> str suggestion_to_dict(suggestion:
List[TokenWithConfidence]) -> dict:
"""Renders correction annotations for Converts a suggestion to a dict.

Args:

Utility: -105.35 (vs. -413.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidenceList[TokenWithConfidence]]) -> str:
"""ConvertsRenders a suggestion tolist of suggestions in JSON format.

Args:
suggestion: ListA list of lists of tokens and their confidence.

confidences.

Returns:
JSON representationRendering of the suggestiontokens with confidence.

"""
result = []
for tokens_with_conf in suggestion:
token_with_conf_json = {

'token': [],
'confidence': [],

}
for token_with_conf in tokens_with_conf:
token_with_conf_json['token'].append(token_with_conf.token)
token_with_conf_json['confidence'].append(token_with_conf.confidence)

result.append(token_with_conf_json)
return json.dumps(suggestion)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str:
"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

Utility: -102.84 (vs. -356.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""ConvertsRenders a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
as a JSON representation of the suggestion.

"""object."""
return json.dumps(suggestion[token.token for token in suggestion])

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str get_top_n(suggestions:
List[List[TokenWithConfidence]], n: int) -> List[List[TokenWithConfidence]]:
"""ConvertsReturns the top n suggestions of a token and its confidence to JSON.

list of suggestions.

Args:
suggestions: List of suggestions for a single token_with_conf: Token and its confidence.
n: Number of suggestions to return.

Returns:
JSON representationA list of suggestions of size n, with the suggestionhighest confidence

first.
"""
return json.dumps(token_with_conf)sorted(suggestions, key=lambda s: len(s), reverse=True)[:n]

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:
def join_suggestion(suggestion: List[List[TokenWithConfidence]],

Utility: 115.64 (vs. -89.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestionlist of tokens and their confidence to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestionlist.

"""
return json.dumps(suggestion[dict(token=token_with_conf.token,

confidence=token_with_conf.confidence)
for token_with_conf in suggestion])

def token_with_conf_to_json json_to_suggestion(json: str) -> List([token_with_conf:
TokenWithConfidence)] -> str:
"""ConvertsParses a token and its confidence tosuggestion from a JSON string.

Args:
token_with_conf: Token and its confidence.

Returns:
json: JSON representation of the suggestionlist.

Returns:
List of tokens and their confidence.

"""
return json.dumps(token_with_conf)
[TokenWithConfidence(token=t["token"],

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

Utility: -166.35 (vs. -476.0 without UNSURE annotations)
def suggestion_to_json(suggestionsuggestion_list:
List[TokenWithConfidenceList[TokenWithConfidence]]) -> str:
"""ConvertsRenders a suggestion to JSONlist of suggestions in json format.

Args:
suggestion: Listsuggestions_list: A list of tokens and their confidence.

suggestions to render.

Returns:
JSON representationThe list of the suggestionsuggestions as json string.

"""
return json.dumps(suggestionsuggestion_list, default=lambda o: o.__dict__, sort_keys=True,

indent=2)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str:
"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str _is_suggestion_list_equal(a:
List[List[TokenWithConfidence]], b: List[List[TokenWithConfidence]]) -> bool:
"""Renders correction annotations for a suggestionChecks if two lists of suggestions are equal.

Args:
Args:
a: First list of suggestions.
b: Second list of suggestions.

Returns:
True if the lists are equal, otherwise

Figure 7: Inferred edits from the output suggestion in Figure 5 to each of the hypothetical user
intents in Figure 6, along with the utility estimates for each when we either insert UNSURE regions as
shown or require all tokens to be marked SURE. Constant utility shifts do not affect relative utility of
different suggestions, so for our results in Table 1 and Figure 4c, we report utility relative to marking
all tokens as SURE (i.e. the difference between the two values shown here). Note that utility improves
when adding UNSURE regions for all samples except the first, which was the sample used as the
suggestion prototype.
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"""Visualizing trends using SQLite and Matplotlib"""
import sqlite3
from matplotlib import pyplot as plt

# Open the database
conn = sqlite3.connect('data/budget.db')
c = conn.cursor()

# Get the data
c.execute('''SELECT date, SUM(budget)

FROM transactions
GROUP BY date''')

data = c.fetchall()

# Close the database
conn.close()

# Create the plot
fig, ax = plt.subplots()
ax.plot(data)

# Show it
plt.show()

conn = sqlite3.connect('data/budget.db')
c = conn.cursor()
c.execute('''SELECT date, SUM(budget)

FROM transactions
GROUP BY date''')

data = c.fetchall()
conn.close()
fig, ax = plt.subplots()
ax.plot(data)
plt.show()

Figure 8: Full prompt and output for the example at the right of Figure 1. Above, the full generated
output of the model. Below, the possible calls we extracted by postprocessing the raw output, with
highlighting denoting the calls selected by R-U-SURE. (Note that for this task R-U-SURE operates
on this reduced set of calls only.)

18



Published as a workshop paper at ICLR 2023 (Deep Learning For Code)

R-U-SURE (Region)
# Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = (binary % 10) + (binary % 10) * 10 * i
decimal = decimal + dec * (2 ** n)
binary /= 10
i += 1
n += 1

return decimal

# Driver code
binary = "1101110011111"
print(binary_to_decimal(binary))

Ground Truth
# Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = binary % 10
decimal = decimal + dec * pow(2, i)
binary = binary//10
i += 1

return (decimal)

Test cases for intended behavior
assert binary_to_decimal(100) == 4
assert binary_to_decimal(1011) == 11
assert binary_to_decimal(1101101) == 109

Figure 9: Output of R-U-SURE compared to the ground truth for an example in the Mostly Basic
Python Problems benchmark dataset (Austin et al., 2021). We manually selected a location in the
MBPP reference solution, then fed the prefix to the model. The model’s implementation does not
exactly match the intended behavior, but all incorrect parts are highlighted. (Note: MBPP examples
were not used in our main experimental results.)
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Token Probability Heatmap
# Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = (binary % 10) + (binary % 10) * 10 * i ↩

decimal = decimal + dec * (2 ** n) ↩

binary /= 10 ↩

i += 1 ↩

n += 1 ↩

return decimal ↩

↩

# Driver code ↩

binary = "1101110011111" ↩

print(binary_to_decimal(binary)) ↩

Baseline: Token Prob 0.7
# Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = (binary % 10) + (binary % 10) * 10 * i
decimal = decimal + dec * (2 ** n)
binary /= 10
i += 1
n += 1

return decimal

# Driver code
binary = "1101110011111"
print(binary_to_decimal(binary))

Baseline: Token Prob 0.9
# Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = (binary % 10) + (binary % 10) * 10 * i
decimal = decimal + dec * (2 ** n)
binary /= 10
i += 1
n += 1

return decimal

# Driver code
binary = "1101110011111"
print(binary_to_decimal(binary))

Figure 10: Per-token conditional probability heatmap and output of token-probability-based baselines
for the MBPP example in Figure 9. Note that low-conditional-prob. tokens (such as the ‘/=’ after
‘binary‘) are frequently followed by high-conditional-prob. tokens that only make sense in context
of the earlier tokens (such as ‘10’).
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R-U-SURE (Region)
# Write a python function to count number of substrings with the sum of digits equal to their length.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1
♦
for i in range(0,n):

sum += s[i]
count += mp[sum]
mp[sum] += 1
♦

return count

print(count_Substrings("abc",4))

Ground Truth
# Write a python function to count number of substrings with the sum of digits equal to their length.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1
for i in range(n):

sum += ord(s[i]) - ord('0')
count += mp[sum - (i + 1)]
mp[sum - (i + 1)] += 1

return count

Test cases for intended behavior
assert count_Substrings('112112',6) == 6
assert count_Substrings('111',3) == 6
assert count_Substrings('1101112',7) == 12

Figure 11: Output of R-U-SURE compared to the ground truth for another example in the Mostly
Basic Python Problems benchmark dataset (Austin et al., 2021). We manually selected a location in
the MBPP reference solution, then fed the prefix to the model. Again, the model’s implementation
does not exactly match the intended behavior. In this case, most incorrect parts are highlighted, but
there are some changes that must also be made outside of highlighted regions. The ‘�’ character
denotes a location where additional statements might be inserted.
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Token Probability Heatmap
# Write a python function to count number of substrings with the sum of digits equal to their length.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1↩
for i in range(0,n):↩

sum += s[i]↩
count += mp[sum]↩
mp[sum] += 1↩

return count↩
↩

print(count_Substrings("abc",4))↩

Baseline: Token Prob 0.7
# Write a python function to count number of substrings with the sum of digits equal to their length.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1
for i in range(0,n):

sum += s[i]
count += mp[sum]
mp[sum] += 1

return count

print(count_Substrings("abc",4))

Baseline: Token Prob 0.9
# Write a function to convert the given binary number to its decimal equivalent.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1
for i in range(0,n):

sum += s[i]
count += mp[sum]
mp[sum] += 1

return count

print(count_Substrings("abc",4))

Figure 12: Per-token conditional probability heatmap and output of token-probability-based baselines
for the MBPP example in Figure 11.
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import jax.numpy as jnp
import jax
import optax
import functools

import foo.models

# Set up for training
initial_params = foo.models.initial_params()

# Configure optimizer
optimizer = optax.adamw(1e-3, b1=0.9, b2=0.999)

# Define loss function
def loss_fn(params, batch):

logits = foo.models.apply_fn(*batch, params=params)
loss = jnp.mean(jax.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=batch[2]))
return loss, logits

# Create initial model
def init_model(rng_key):

_, params = initial_params(rng_key, (-1,))
return params

# Define update rule
@functools.partial(jax.jit, static_argnums=(0,))
def update(params, grads, state, batch):

state, params = state

optimizer = optax.adamw(1e-3, b1=0.9, b2=0.999)
logits = foo.models.apply_fn(*batch, params=params)
loss = jnp.mean(jax.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=batch[2]))
_, params = initial_params(rng_key, (-1,))
@functools.partial(jax.jit, static_argnums=(0,))

Figure 13: Output of R-U-SURE (Useful Calls) for a handwritten prompt involving usage of optax.
After postprocessing, the only calls that appear often enough in the model samples to be extracted are
calls to optax.adamw and jnp.mean; these would be good candidates for preemptively showing
documentation.
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A.1 RUNTIME OF R-U-SURE

The wall-clock runtime of our implementation of the R-U-SURE system depends on the number of
samples as well as the complexity of the programs. We demonstrate this by measuring the runtime
for the two prompts shown in Figure 5 and Figure 9, across varying number of model samples and
sample lengths. On a GCP n1-standard-8 virtual machine, we obtain the following results:

• Combining eight model samples, each restricted to eight lines, takes about 20 to 60 mil-
liseconds for the dual decomposition solver and about 1 to 1.5 seconds for the parsing and
diagram construction logic.
• Combining 32 eight-line samples takes between 0.1 and 1.5 seconds for the solver and about

3 to 5 seconds for parsing/diagram construction.
• Combining 32 longer model samples (with 256 vocabulary tokens, or about 23 lines) can take

between 0.5 and 6 seconds for the solver and between 8 and 40 seconds for parsing/diagram
construction depending on complexity (with the example in Figure 5 taking the longest).

We note that, in our current implementation, the parsing/diagram construction logic is designed to be
flexible and makes heavy use of Python dictionaries. This could likely be sped up considerably for a
specialized application. The solver can also be interrupted if necessary to obtain a possibly-suboptimal
solution in a fixed amount of time.

In terms of asymptotic complexity, the time and space required to build the system and each iteration
of coordinate ascent scales as O(`2K), where ` is the length of the model suggestions and K is the
number of samples.
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B ADDITIONAL RELATED WORK

Decoding by maximizing utility. A variety of sampling-based decoding strategies aiming to min-
imize Bayes risk have been proposed, with many works applying it to neural machine translation
(Eikema & Aziz, 2020; Bhattacharyya et al., 2021; Kumar & Byrne, 2004; Ehling et al., 2007; Müller
& Sennrich, 2021; Eikema & Aziz, 2021; Freitag et al., 2022) and to code generation (Li et al., 2022;
Shi et al., 2022). These approaches generally use a utility function to select one sample from a
larger generated set. González-Rubio & Casacuberta (2015) also explore combining parts of multiple
samples to construct a single combined sample, and Lin & Chen (2010) propose using Bayes risk for
extractive summarization.

Reinforcement-learning and sequential-decision-making techniques can also be used to maximize
conditional expected utility, by interpreting tokens as actions and the utility as a reward (Lampouras &
Vlachos, 2016; Sun et al., 2017; Chen et al., 2018; Prabhavalkar et al., 2018; Keneshloo et al., 2019;
Leblond et al., 2021). Many works maximize quality metrics such as BLEU or error-rate, although
others have used measures of program correctness (Le et al., 2022) or learned reward models (Ziegler
et al., 2019; Ouyang et al., 2022; Bai et al., 2022). Others have trained models to imitate a more
expensive reward-driven search process (Kuncoro et al., 2016; Liu et al., 2018; Sabour et al., 2019).

Selective and multi-choice prediction. One approach to avoid incorrect predictions under uncer-
tainty is selective classification, i.e. abstaining from some predictions to minimize overall risk
(Chow, 1957; El-Yaniv et al., 2010; Geifman & El-Yaniv, 2017; Dong et al., 2018; Ziyin et al., 2019).
Another approach is to output multiple predictions, e.g. all classifications with confidence above a
threshold (Vovk et al., 2005; Angelopoulos & Bates, 2021), or an ensemble of structured outputs
which approximately covers the true output (Guzman-Rivera et al., 2012; 2014; Prasad et al., 2014;
Lee et al., 2016; Bhattacharyya et al., 2018; Firman et al., 2018; Premachandran et al., 2014). When
the space of possible outputs is very large, uncertain predictions can be compressed by representing
multiple sequences as a lattice (Su et al., 2017; Sperber et al., 2017); lattice representations have also
been used within a Bayes risk framework (Tromble et al., 2008; Xu et al., 2010).

Generating and identifying partial programs. A number of other works have considered identi-
fying common patterns in source code (Lozano et al., 2010; Allamanis & Sutton, 2014; Shin et al.,
2019; Sivaraman et al., 2021). There has also been work toward generating programs with holes to
aid in program synthesis (Nye et al., 2019; Ellis et al., 2020).

Uncertainty quantification and summarization. Past works have compared model-generated
sequences to ground truth (Ott et al., 2018; Holtzman et al., 2019), analyzed when such models are
calibrated (Carrell et al., 2022), and proposed new mechanisms for training better-calibrated models
(Tran et al., 2022; Xiao et al., 2022). Kadavath et al. (2022) find that some large language models
can answer natural-language questions about the accuracy of their own generated outputs, improving
when multiple sampled outputs are included in the prompt. Our work relies on the calibration and
sample-quality of the base intent model, but focuses on exposing this uncertainty to end-users. Also
related are works which use attention and saliency maps to inform users about model behavior
(Stevens & Su, 2020; Tenney et al., 2020), as well as works that visualize per-token probabilities to
summarize model uncertainty (Strobelt et al., 2021; Weisz et al., 2021; Sun et al., 2022).

Combinatorial optimization. Dual decomposition and block coordinate descent/ascent solvers have
been applied to a variety of optimization problems, including combinatorial search (Swoboda et al.,
2016), MAP inference (Sontag et al., 2011), and NLP tasks (Rush et al., 2010). There has also been
recent interest in using binary decision diagrams as representations for combinatorial optimization
Castro et al. (2022). Our work expands on Lange & Swoboda (2021) by applying dual decomposition
to a larger class of decision diagrams; see Appendix C.
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C DECISION DIAGRAMS: DEFINITIONS AND ALGORITHMS

In this section, we discuss our definition of decision diagrams and describe how we use them to
enable efficient algorithms.

C.1 OUR DEFINITIONS

Definition C.1. A (nondeterministic, weighted) binary decision diagram (BDD) D over binary
vectors b ∈ {0, 1}d is a directed acyclic graph consisting of

• a node set N ,

• an arc set A,

• mappings h : A → N and t : A → N such that each arc a is directed from node h(a) to
node t(a),

• a mapping w : A→ R such that w(a) is the weight of arc a,

• a mapping α : A→ ({1, . . . , d} × {0, 1}) t {NONE} such that, if α(a) = (i, β), then this
edge can only be used when bi = β, and if α(a) = NONE, this edge can always be used.

• a source node > ∈ N , which is not the tail of any arc,

• a sink node ⊥ ∈ N , which is not the head of any arc.
Definition C.2. A computation path for a binary vector b ∈ {0, 1}d is a sequence of arcs P =
(a1, a2, . . . , an) from > to ⊥ that are consistent with b, e.g. such that h(a1) = >, h(ai+1) = t(ai)
for 1 ≤ i < n, t(an) = ⊥, and if α(ai) = (j, β) for any i then bj = β. The weight of this path is
the sum of arc weights

∑
i w(ai), which by abuse of notation we will denote w(P ). We denote the

set of all computation paths for a particular vector b as P(D, b).
Definition C.3. A BDD D represents a binary function w : {0, 1}d → R ∪ {−∞} (under max-
aggregation) if, for all b ∈ {0, 1}d, we have

w(b) = max
P∈P(D,b)

w(P ),

e.g. this is the weight of the maximum-weight path from > to ⊥ consistent with P , or −∞ if there
are no such paths.
Definition C.4. A BDD D is ordered if its nodes can be partitioned into layers according to some
partition function ` : N → {0, 1, . . . , d} such that `(>) = 0, `(⊥) = d, and for each arc a ∈ A:

• if α(a) = NONE, then `(h(a)) = `(t(a)),

• if α(a) = (i, β), then `(h(a)) = i− 1 and `(t(a)) = i.

Intuitively, an ordered BDD is a BDD such that any path from> to⊥ assigns every index of b exactly
once, in order of increasing index.
Definition C.5. A system of BDDs is a collection of BDDs Di over the same set of binary vectors
b ∈ {0, 1}d. We say that a system of BDDs represents a binary function w : {0, 1}d → R ∪ {−∞}
if w can be written as a sum

w(b) =
∑
i

w(i)(b)

and Di represents w(i) for each i.

Our approach described in Section 3.3 can now be described more specifically as rewriting our
original objective using a set of binary functions

w(k)(b) =

{
1
Ku(g(k), f(b)) b ∈ B,
−∞ otherwise.

and then representing each such function with an ordered BDD. More generally, we allow representing
w(k)(b) as a system of BDDs (D

(k)
1 , D

(k)
2 , . . . , D

(k)
m ), and take advantage of this flexibility to
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efficiently separate the computation of the utility function from constraints, which we describe in
more detail in Appendix D. Combining all of the BDDs or BDD systems for each value of k then
yields a system (D1, . . . , DJ) that represents the total utility

U(b) =

K∑
k=1

w(k)(b)

as estimated across the samples g(1), . . . , g(k). (Note that the number K of samples may or may not
match the number of decision diagrams J in general, depending on whether any of the w(k) were
represented as more than one diagram).

We note that any function w(k) : B → R can be expressed as a weighted binary decision diagram, but
the size of the diagram may grow exponentially with the number of binary choices d (Hooker, 2013).
However, our edit-distance-based utility functions u(g, s) can be represented as decision diagram
whose size grows only quadratically with the number of tokens in s and g, due to the similarity
between decision diagrams and dynamic programming algorithms.

C.2 A COMPARISON TO OTHER DEFINITIONS OF DECISION DIAGRAMS

Decision diagrams have seen a number of uses for a variety of combinatorial optimization and search
problems; Castro et al. (2022) gives an overview of many such uses. Here we briefly summarize
some of the differences between our definition and others in the literature.

Determinism Many definitions of decision diagrams (e.g. Lozano et al. (2020); Lange & Swoboda
(2021)) focus on deterministic decision diagrams, which have the additional properties that

• every node n other than ⊥ is associated with a particular decision variable bvar(n) with
var(n) ∈ {1, . . . , d},

• there are at most two edges from any given node n (i.e. with h(a) = b): one which assigns
α(a) = (var(n), 0) and one which assigns α(a) = (var(n), 0),

• every arc assigns some variable, e.g. there is no edge with α(a) = NONE.

Nondeterministic decision diagrams are related to deterministic ones in the same way that nondeter-
ministic finite automata relate to deterministic finite automata: for a deterministic decision diagram,
you can read off a single computation path P for a given vector b if it exists by following the sequence
of branches, whereas for a nondeterministic decision diagram, you may need to search over many
consistent sub-paths to identify one or more computation paths for a specific vector.

Some definitions of nondeterministic decision diagrams define them by introducing two types of
node: ordinary nodes, which are associated with variables have two outgoing arcs tagged 0 and 1, and
nondeterministic nodes, which have no variable and any number of outgoing arcs with α(a) = NONE
(Bollig & Buttkus, 2018). For simplicity, our definition does not directly constrain edges based on
any assignment of nodes to decision variables, but the two formulations are equivalently expressive,
especially for ordered nondeterministic BDDs (for which ` approximately corresponds to a node-
variable association).

Ambiguity Most definitions of nondeterministic BDDs focus on unambiguous nondeterministic
BDDs, for which there is at most one computation path for any binary vector b (Bollig & Buttkus,
2018); these can also be referred to as exactly representing specific binary functions (Castro et al.,
2022). In contrast, we explicitly allow BDDs to be ambiguous, and resolve conflicts by taking the max
over edges. This makes it significantly easier to express our utility functions as decision diagrams,
by essentially interleaving the edit-distance search algorithm with the decision diagram as part of a
single optimization problem.

It turns out to be very straightforward to extend the min-(or max-)marginal averaging technique of
Lange & Swoboda (2021) to work for ambiguous decision diagrams with only minimal changes, as
we describe in the next section.
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Reduction A common method for obtaining more efficient representations of decision diagrams is
to reduce them to a particular canonical form, collapsing nodes that serve identical roles (Hooker,
2013; Castro et al., 2022). While it may be possible to reduce our decision diagrams to a more
efficient form, we do not attempt to produce reduced decision diagrams in our implementation.

Binary v.s. multivalued Some definitions of decision diagrams allow variables to be assigned to
values in a larger finite set V; these are known as multivalued decision diagrams (Hooker, 2013;
Castro et al., 2022). In practice, we implement our utility functions as multivalued decision diagrams;
however, to make derivations simpler for the Lagrangian relaxation, we encode these multivalued
choices as one-hot-encoded binary vectors before running our max-marginal optimization process.

C.3 EFFICIENT ALGORITHMS FOR MAX-MARGINAL MESSAGE PASSING ON BDDS

We now describe how to efficiently optimize a Lagrangian relaxation of a BDD system, as described
in Sections 3.2 and 3.3. We consider the objective

U = max
b∈{0,1}d

J∑
j=1

w(j)(b), (6)

where we have changed the indexing to account for situations where the number of decision diagrams
J does not equal the number of model samples K. We then construct the Lagrangian relaxation

W (j)(b(j),λ) = w(j)(b(j)) + λ(j) · b(j), (7)

L(λ(1:J)) =

J∑
j=1

max
b(j)

W (j)(b(j),λ) (8)

where we require that
∑
m λ

(j) = 0. Intuitively, if we have b(j)i 6= b
(j′)
i , we can adjust the λ(j)

i

and λ(j′)
i in opposite directions to remove any utility benefits of violating the equality constraint.

(However, this penalty acts independently on each variable, and may not be able to simultaneously
enforce agreement for joint configurations of variables; this is what causes a nonzero duality gap.)
We note that this is the same relaxation described by Lange & Swoboda (2021, Section 3.1), except
for the more general form of w(j) (not just for linear programs) and the use of max rather than min.

The max-marginal coordinate ascent update with respect to the variable block (λ
(1)
i , λ

(2)
i , . . . , λ

(K)
i ),

as derived by Lange & Swoboda (2021), is then given by

m
(j)
i:=β = max

b(j) s.t. b(j)i =β

W (j)(b(j),λ), β ∈ {0, 1} (9)

λ
(j)
i ← λ

(j)
i − (m

(j)
i:=1 −m

(j)
i:=0) +

1

J

∑
j′

(
m

(j′)
i:=1 −m

(j′)
i:=0

)
. (10)

Our main requirement for computing this update is that we can efficiently compute the m(j)
i:=β for

our current values of λ. Fortunately, this can be done for nondeterministic weighted BDDs using a
straightforward dynamic programming algorithm. This algorithm maintains two cached dynamic
programming tables (PREFIX and SUFFIX) in order to make updates efficient: PREFIX stores the
maximum weight from > to a given node (sorted by level `), and SUFFIX stores the maximum weight
from each node to ⊥. We initialize these tables using Algorithm 3, then run Algorithm 5 to compute
desired max marginals. Then, each time we update values for λ(1:J)

i , we must invalidate the caches
for index i by running Algorithm 4.

A key property of this algorithm is that modifying the dual variables for a particular decision variable
b
(j)
i only affects prefixes and suffixes that include assignments to b(j)i . Thus, if we wish to compute

max-marginals for b(j)i−1 or b(j)i+1 next, we can reuse almost all of the values from the cache, and only

update the prefixes that changed due to modifications to λ(j)
i .

We take advantage of this property by running a series of alternating forward and backward sweeps,
updating λ(1:J)

1 ,λ
(1:J)
2 , . . . ,λ

(1:J)
d during a forward sweep and then λ(1:J)

d ,λ
(1:J)
d−1 , . . . ,λ

(1:J)
1 in a
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Algorithm 3 Stateful dynamic programming algorithm initialization step

Input: BDD Dj = (N,A, h, t, w, α,>,⊥) with order `, caches PREFIX and SUFFIX
# Compute initial prefixes
Initialize PREFIX[0,>] = 0.0
for each arc a ∈ A with `(h(a)) = `(t(a)) = 0), in topologically-sorted order do

Set PREFIX[k, t(a)] = max(PREFIX[k, t(a)], PREFIX[k, h(a)] + w(a))
end for
# Compute initial suffixes
Initialize SUFFIX[d,>] = 0.0
for each arc a ∈ A with `(h(a)) = `(t(a)) = d), in reverse topologically-sorted order do

Set SUFFIX[k, h(a)] = max(SUFFIX[k, h(a)], SUFFIX[k, t(a)] + w(a))
end for

Algorithm 4 Stateful dynamic programming cache invalidation step

Input: BDD Dj = (N,A, h, t, w, α,>,⊥) with order `, updated index i, caches PREFIX and
SUFFIX
for k in [i, i+ 1, . . . , d] do

Delete all entries of PREFIX[k, :]
end for
for k in [0, 1, . . . , i− 1] do

Delete all entries of SUFFIX[k, :]
end for

backward sweep. Each of these sweeps visits every arc twice (once to compute max marginals and
once to update the modified prefix or suffix), enabling us to run an entire min-marginal-averaging
cycle with time complexity proportional to the size of the decision diagram.

Note that this algorithm is not guaranteed to find a primal solution if there is a nonzero dual gap,
and may get stuck in certain fixed points even if the dual gap is zero (Werner et al., 2020). In our
experiments, however, we find that the bound is tight (to within machine precision) over 85% of the
time.

C.4 EXTENSION TO MULTIVALUED DECISION DIAGRAMS

In practice, although we analyze and implement our algorithms as if we are optimizing over binary
variables, it is more convenient for our utility functions to be written in terms of assignments to an
arbitrary finite set of values V ; this is sometimes known as a “multivalued” decision diagram (Hooker,
2013). We do this by enumerating the values of V , and treating a particular choice xi = v ∈ V as a
collection of “indicator” assignments b(i,v) := 1, b(i,v′) := 0 for v′ 6= v.

We take advantage of our knowledge of this indicator structure when running our max-marginal
step, to simplify the implementation. In particular, we perform simultaneous block updates over all
indicator variables, computing

m
(j)
(i,v):=1 = max

b(j) s.t. b(j)
(i,v)

=1,

W (j)(b(j),λ) (11)

λ
(j)
(i,v) ← λ

(j)
(i,v) −m

(j)
(i,v):=1 +

1

J

∑
j′

m
(j′)
(i,v):=1. (12)

which is the update from Equation (10) but dropping the m(j)
(i,v):=0 terms. This works because we

know that, for any valid assignment to the indicator variables, exactly one such indicator will be
active. Thus, each of the m(j)

(i,v):=0 terms is equal to m(j)
(i,v′):=1 for some alternative assignment v′,

which means making the m(j)
(i,v′):=1 agree is sufficient to make the differences m(j)

(i,v):=1 −m
(j)
(i,v):=0

agree as well. (Indeed, in our actual implementation of Algorithm 5, we do not bother computing
entries for the m(j)

(i,v):=0 at all, since they are unused in the update Equation (12).)
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Algorithm 5 Stateful dynamic programming algorithm for m(j)
i:=β

Input: BDD Dj = (N,A, h, t, w, α,>,⊥) with order `, desired variable index i, λ(j), caches
PREFIX and SUFFIX
# Compute necessary prefixes
for k in [1, 2, . . . , i− 1] do

if PREFIX does not have values for level k then
for each node n ∈ N with `(n) = k do

Initialize PREFIX[k, n] = −∞
end for
# Process edges that assign bk
for each arc a ∈ A with `(h(a)) = k − 1 and `(t(a)) = k, in topologically-sorted order do

Let (v, β) = α(a), assert v = k # a must assign to bk by Definition C.4
if β = 1 then # Need to perturb by λ(j)

k

Set PREFIX[k, t(a)] = max(PREFIX[k, t(a)], PREFIX[k − 1, h(a)] + w(a) + λ
(j)
k )

else
Set PREFIX[k, t(a)] = max(PREFIX[k, t(a)], PREFIX[k − 1, h(a)] + w(a))

end if
end for
# Process edges in level k
for each arc a ∈ A with `(h(a)) = k and `(t(a)) = k, in topologically-sorted order do

Set PREFIX[k, t(a)] = max(PREFIX[k, t(a)], PREFIX[k, h(a)] + w(a))
end for

end if
end for
# Compute necessary suffixes
for k in [d− 1, d− 2, . . . , i] do

if SUFFIX does not have values for level k then
for each node n ∈ N with `(n) = k do

Initialize SUFFIX[k, n] = −∞
end for
# Process edges that assign bk+1

for each arc a ∈ A with `(h(a)) = k and `(t(a)) = k + 1, in reverse topologically-sorted
order do

Let (v, β) = α(a), assert v = k + 1 # a must assign to bk+1 by Definition C.4
if β = 1 then # Need to perturb by λ(j)

k+1

Set SUFFIX[k, h(a)] = max(SUFFIX[k, h(a)], SUFFIX[k + 1, t(a)] + w(a) + λ
(j)
k+1)

else
Set SUFFIX[k, h(a)] = max(SUFFIX[k, h(a)], SUFFIX[k + 1, t(a)] + w(a))

end if
end for
# Process edges in level k
for each arc a ∈ A with `(h(a)) = k and `(t(a)) = k, in reverse topologically-sorted order
do

Set SUFFIX[k, t(a)] = max(SUFFIX[k, t(a)], SUFFIX[k, h(a)] + w(a))
end for

end if
end for
# Compute max marginals
Initialize m(j)

i:=0 and m(j)
i:=1 to −∞

for each arc a ∈ A with `(h(a)) = i− 1 and `(t(a)) = i do
Let (v, β) = α(a), assert v = i # a must assign to bi by Definition C.4
Set m(j)

i:=β = max(m
(j)
i:=β , PREFIX[i− 1, h(a)] + w(a) + SUFFIX[i, t(a)] + λ

(j)
i )

end for
return m

(j)
i:=0,m

(j)
i:=1
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This indicator representation also allows us to reuse parts of our implementation when decoding a
heuristic primal solution, in the situations where our solver fails to find a setting for the dual variables
that makes the dual bound tight. Specifically, we iterate through all of the variables, and greedily
select the best assignment

v∗i = arg maxm
(j)
(i,v):=1

then set
λ
(j)
(i,v′) ← −∞

for each v′ 6= v∗i . This effectively prunes any arc that assigns a different value from the graph,
ensuring we decode a single consistent assignment.
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D UTILITY FUNCTIONS AND TREE REPRESENTATION

In this section, we give a high level description of our utility function implementation and of the
tree representation we use for combining suggestions. We will also include the code for our utility
functions in a later open-source release.

D.1 TREE REPRESENTATION

We represent the model samples and user intents as possibly-nested sequences of nodes of the
following types:

• Token nodes represent programming language tokens, which we should try to match
between the suggestion and the target intent. Token nodes contain a source string and
optionally a type, and any two nodes with the same string and the same type will match. We
typically use the type to encode information about the AST nodes.
• Decoration nodes denote locations of whitespace or other aspects of the suggestion that do

not need to be considered as part of the edit distance calculation. These are not used during
optimization.
• Group nodes contain an arbitrary number of child nodes, which may be token nodes,

decoration nodes, or other group nodes. Each group node has an optional type, and any two
group nodes of the same type can be matched together; matching two group nodes involves
running an edit distance calculation on their children subsequences.

The suggestion prototype, usually the model sample with the highest probability, is augmented with a
few additional nodes:

• Region start nodes represent locations where we may start a confidence region. Depending
on the configuration, such regions may represent pockets of UNSURE within a default of
SURE (e.g. for detecting edit locations), or pockets of SURE within a default of UNSURE
(e.g. for extracting a subsequence of API calls).
• Region end nodes represent locations where we may end a confidence region that we started

earlier in the (sub)sequence. Note that every confidence region that starts inside a group
node is required to end within that same group node.
• Truncation nodes represent locations where we may decide to truncate the suggestion.

These nodes are inserted in various locations into the parse tree with a preprocessing step, which
gives us a large amount of control over the space of augmented suggestions S. For instance, for the
edit localization task, we do not allow UNSURE regions to include single parentheses or brackets by
placing matched brackets into a group and not allowing regions to start or end at the boundary of
those groups. For the API call task, we use the region start/end nodes to identify SURE calls, but only
allow calls to be selected one at a time by only inserting them inside the relevant call groups.

D.2 UTILITY FUNCTION

We now describe our base utility function at a high level; the specific applications are determined by
configuring this utility function with different costs and constraints.

D.2.1 UTILITY CONFIGURATION

Our utility function implementation is configured by a set of edit penalties:

• For each confidence level:
– A per-character or per-token utility for matching tokens in the suggestion with those in

the ground truth,
– A per-character or per-token cost for deleting tokens in the suggestion
– A penalty for starting to edit (either inserting or deleting)

• A penalty for changing confidence levels (e.g. to encourage fewer blocks of UNSURE).
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D.2.2 EDIT-BASED DECISION DIAGRAM

Nodes in our decision diagram (which we call “states” to distinguish them from tree nodes, by analogy
to finite state machines) are associated with a tuple of positions, one in the prototype and one in the
hypothetical target intent (usually generated from the model), in a similar way as in Algorithm 2.

We further group our states into a number of types, used to track the progress of edits. The list of
state types are:

• PROCESS-PROTOTYPE (ADVANCE): We are advancing past region start/end nodes or
truncation nodes in the prototype. We can either stay in PROCESS-PROTOTYPE and move
past one of those nodes in the prototype, or transition to MATCH to match tokens or groups,
or transition to MAY-DELETE if we need to edit at this location, which incurs an additional
penalty.
• MAY-DELETE: We have decided we need to make an edit at this location. We are allowed

to delete an arbitrary number of the prototype; we may also process any region start/end
nodes or truncation nodes we see. We then transition into MAY-INSERT.
• MAY-INSERT: We are allowed to insert an arbitrary number of nodes in the target. We

always insert after deleting, to reduce the number of redundant paths in the graph. Once we
have inserted all that we need to, we can transition to MATCH.
• MATCH: We are prepared to match nodes in the prototype and target, after which we return

to PROCESS-PROTOTYPE; we can also end the subproblem if we are at the end of two
group nodes.
• RECURSIVELY-DELETING (FORCED): We have committed to deleting an entire sub-

tree, and are now deleting each of the nodes in it. We cannot stop until we exit the subtree.
• RECURSIVELY-INSERTING (FORCED): We have committed to inserting an entire

subtree, and are now inserting each of the nodes in it. We cannot stop until we exit the
subtree.

Additionally, each node is associated with a confidence level (SURE or UNSURE); the active confi-
dence level determines the utility associated with each of the state transitions described above.

Token nodes are handled depending on the state; in MATCH we must align two identical tokens
to proceed, whereas in MAY-DELETE or MAY-INSERT we are allowed to delete or insert tokens
individually.

Group nodes are handled using a recursive call. If we are processing two group nodes and we are in
the MATCH state, we recursively build a decision diagram for the subsequences of the two nodes. If
we delete a group node in the MAY-DELETE state, we call a recursive helper function that builds a
small decision diagram that only deletes nodes and stays in the RECURSIVELY-DELETING state.
Inserts are handled in an analogous way.

We implicitly embed the space of suggestions S(g(1)) into a space of binary vectors by introducing
decisions for each of the control nodes. Here we focus on the version of our task that introduces
UNSURE regions into a suggestion.

• At a Region Start node, if we are currently in SURE, we can transition to UNSURE. We track
this choice with a decision variable assignment.
• At a Region End node, if we are currently in UNSURE, we can transition to SURE. We track

this choice with a decision variable assignment.
• At a truncation node, we can choose to immediately jump from our current state to the final

state, paying no more penalties but receiving no additional reward. We track this choice
with a decision variable assignment.

We additionally include decision variables that track whether each token was inside a annotated
region when we processed it; this information is redundant with the start/end nodes, but can improve
the optimization by providing additional information in the message passing iterations. We then order
these decision variables by their order of appearance in the graph, and interpret the values of each
decision as the embedding φ(s) of each possible suggestion.
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Figure 14 shows a rendering of the decision diagram we construct when combining two simple
sequences. Note that the diagrams we use to combine actual model samples are much larger, since
every token of the suggestion is represented by multiple states in the diagram. Also, this diagram is
written in terms of negative utility (e.g. as a collection of costs).

D.2.3 CONSTRAINT DECISION DIAGRAM

The above decision diagram ensures that edits respect the tree structure, but does not by itself ensure
that annotated regions are aligned with that tree structure. We address this by building a second
decision diagram, which depends only on the prototype sequence and which enforces the constraints
on the annotated regions.

The second DAG tracks a more fine-grained set of confidence types:

• OUTSIDE-REGION: We are outside of any annotated region.
• IN-REGION-TEMPORARY: We are inside a annotated region that we started at the

current nesting level.
• IN-REGION-FORCED: We are inside a annotated region that we started at a previous

nesting level (e.g. we started it and then entered a group node subproblem).

Instead of a tuple of positions in the prototype and in target, we track a tuple of a position in the
prototype and a “confidence nesting level”, which represents how many ancestors of this node are
in high-confidence regions rather than low-confidence regions. This allows us to keep track of how
many group nodes we must exit before we are allowed to stop a low-confidence region.

Figure 16 shows a rendering of the decision diagram we construct when combining two simple
sequences. Note that the utility of this diagram is zero along any path; the purpose of this diagram is
to forbid certain subsets of variable assignments (e.g assign them negative utility, or infinite cost).
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Figure 15: Zoomed-in view of a portion of the edit decision diagram in Figure 14
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Figure 17: Zoomed-in view of a portion of the constraint decision diagram in Figure 16. ”Low” refers
to being in an annotated region, which corresponds to low-confidence UNSURE annotations for the
edit localization task.
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E OVERVIEW OF OUR PSEUDO-PARSER

We now provide a high-level overview of our pseudo-parser, which converts code fragments into
abstract syntax tree (AST) like structures. Pairs of these pseudo-parse trees are used by R-U-SURE
to construct matching graphs that parameterize the abstract space over which R-U-SURE searches
for minimum Bayes risk solutions. By representing the source code by a syntactically meaningful
tree structure, it is possible for R-U-SURE to produce completion results that respect the nature of
source code and are especially syntactically meaningful.

Although a complete and precise specification of our pseudo-parsing algorithm is beyond the present
scope, the full details will be available soon in our upcoming code release. In anticipation of that
release, we now provide a high level description of our pseudo-parser and give some illustrative
examples.

E.1 HIGH LEVEL DESIDERATA

We developed our bespoke pseudo-parser with two main goals in mind:

• Language independence: our system handles JAVA, JAVASCRIPT and C++ using a unified
approach that requires only a handful of language specific parameters. PYTHON is handled
similarly, but with some additional complexity due to nature of indents and dedents in that
language.

• Error tolerance: we cannot assume syntactically valid code.

E.2 ALGORITHMS

TOKENIZATION Before pseudo-parsing, we convert source code text into a sequence of tokens that
we identify by regular expression matching. For example, the following code fragment:

y = func(x)

is split into the following (token type, token) pairs:

ID "y"
WHITE_SPACE " "
PUNC "="
WHITE_SPACE " "
ID "func"
BRACE "("
ID "x"
BRACE ")"
NEWLINE "\n"

BASIC BRACKET MATCHING Following tokenization comes the core part of our pseudo-parser, a
bracket-matching algorithm that produces a nested structure. For the example above, this may be
rendered as below. While the full details of the following rendering are not important, the nesting
denoted by indentation clearly reveals relevant structure:

GROUP(ROOT): "y = func(x)\n"
GROUP(SPLIT_GROUP): "y = func(x)\n"

TOK(CONTENT_LEAF): "y"
DEC: " "
TOK(CONTENT_LEAF): "="
DEC: " "
TOK(CONTENT_LEAF): "func"
GROUP(MATCH): "(x)"

TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "x"

TOK(CONTENT_LEAF): "x"

39



Published as a workshop paper at ICLR 2023 (Deep Learning For Code)

TOK(MATCH_RIGHT): ")"
DEC: "\n"

ERROR CORRECTION How to handle sequences with unmatched brackets? In simple cases, missing
closing brackets can be added to restore balance and recover relevant structure, for example this code:

(x

results in the following tree structure:

GROUP(ROOT): "(x\n)\n"
GROUP(SPLIT_GROUP): "(x\n)\n"

GROUP(MATCH): "(x\n)"
TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "x\n"

TOK(CONTENT_LEAF): "x"
DEC: "\n"

TOK(MATCH_RIGHT): ")"
DEC: "\n"

which includes an additional closing brace.

ERROR TOLERANCE In some cases, such as the following:

(x])

no correction is made, and the erroneous brace (in this case the right square brace) is treated as a
regular token, yielding

GROUP(ROOT): "(x])\n"
GROUP(SPLIT_GROUP): "(x])\n"

GROUP(MATCH): "(x])"
TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "x]"

TOK(CONTENT_LEAF): "x"
TOK(CONTENT_LEAF): "]"

TOK(MATCH_RIGHT): ")"
DEC: "\n"

HANDLING PYTHON INDENTS AND DEDENTS Unlike C++, JAVA and JAVASCRIPT, which use
curly brackets, the PYTHON language uses white-space to denote code blocks. To handle this, we
apply our pseudo parser twice. In the first step, we match standard brackets, so that

def f(
x, y):
return x

is parsed as

GROUP(ROOT): "def f(\n x, y):\n return x"
TOK(CONTENT_LEAF): "def"
DEC: " "
TOK(CONTENT_LEAF): "f"
GROUP(MATCH): "(\n x, y)"

TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "\n x, y"

DEC: "\n"
DEC: " "
TOK(CONTENT_LEAF): "x"
TOK(CONTENT_LEAF): ","
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DEC: " "
TOK(CONTENT_LEAF): "y"

TOK(MATCH_RIGHT): ")"
TOK(CONTENT_LEAF): ":"
DEC: "\n"
DEC: " "
TOK(CONTENT_LEAF): "return"
DEC: " "
TOK(CONTENT_LEAF): "x"

from which we determine (using a specific algorithm that works with the above tree representation),
that since the newline and subsequent white-space following the opening bracket is contained within
a matched bracket pair, it is not to be treated as a python code block indent. Once we have detected
what do appear to be valid python code block indents and dedents, we handle them with a second
pass of our error tolerant bracket matching pseudo-parser, which in this case gives the result:

GROUP(ROOT): "def f(\n x, y):\n return x\n"
GROUP(SPLIT_GROUP): "def f(\n x, y):\n return x\n"

GROUP(SPLIT_GROUP): "def f(\n x, y):\n"
TOK(CONTENT_LEAF): "def"
DEC: " "
TOK(CONTENT_LEAF): "f"
GROUP(MATCH): "(\n x, y)"

TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "\n x, y"

DEC: "\n"
DEC: " "
TOK(CONTENT_LEAF): "x"
TOK(CONTENT_LEAF): ","
DEC: " "
TOK(CONTENT_LEAF): "y"

TOK(MATCH_RIGHT): ")"
TOK(CONTENT_LEAF): ":"
DEC: "\n"

GROUP(SPLIT_GROUP): " return x\n"
GROUP(MATCH): " return x"

TOK(MATCH_LEFT): ""
GROUP(MATCH_INNER): " return x"

DEC: " "
TOK(CONTENT_LEAF): "return"
DEC: " "
TOK(CONTENT_LEAF): "x"

TOK(MATCH_RIGHT): ""
DEC: "\n"

in which the matching python indents and dedents are denoted by empty strings.

SUBTOKENIZATION OF STRING LITERALS To allow fine-grained edits within strings (such
as docstrings), we further subtokenize tokens identified as string literals. This subtokeniza-
tion process uses a generic lossless tokenizer originally designed by Kanade et al. (2019)
and made available at https://github.com/google-research/google-research/
tree/master/cubert/unified_tokenizer.py.

41

https://github.com/google-research/google-research/tree/master/cubert/unified_tokenizer.py
https://github.com/google-research/google-research/tree/master/cubert/unified_tokenizer.py


Published as a workshop paper at ICLR 2023 (Deep Learning For Code)

F ADDITIONAL DETAILS ON THE EXPERIMENTAL METHODOLOGY

F.1 EXAMPLE GENERATION

In this section we provide further details on the example generation methodology introduced in
Section 5.1. An example is defined by

1. The choice of source code file from which to derive the example. We use permissively
licensed code from scientific computing repositories hosted on GITHUB1.

2. The starting (or cursor) location at which the hypothetical completion should begin, which
is an index into the characters of the raw source code file.

3. The truncation point, which is the assumed ending location of both the ground truth target
(taken from the original source file, and used for evaluation but not seen by R-U-SURE),
and each of the K = 31 continuations that are samples drawn from the language model (and
are used to form the minimum Bayes risk objective of R-U-SURE defined in Equation (2)).

The first two example types, applicable to all four programming languages that we consider, choose
the starting location uniformly at random from the source code file, and only differ by their choice of
truncation point as follows.

1. For the untruncated target setting, we simply let the truncation point be the end of the
source code file (or the maximum number of tokens allowed in the model’s completion).

2. For the pseudo-parser heuristic target method, we attempt to construct an evaluation
target that is more tailored to practical settings, by truncating at a heuristically defined point
beyond which further continuation may be overly ambiguous. To this end, we first pseudo
parse the example code without truncation, and then find the nearest location following the
starting (or cursor) position which either i) corresponds to the end of the nested sub-tree
which contains the starting location (roughly speaking, the end of the current curly-braced
block in JAVA, say), or if this does not exist because the cursor was not within a nested part
of the source code file, ii) terminates at the end of the current statement (roughly speaking,
the next semi-colon in JAVA, say).

The final pydocstring target example type is PYTHON specific and designed to yield a different
distribution of examples that include a significant natural language component. To achieve this we
let the starting location of the example be the beginning of a DOCSTRING comment in the source
code file (immediately after the triple quotes) and the truncation point be immediately after the
corresponding closing triple quotes. To identify the DOCSTRING, we again lean on our pseudo-parser:
we search for triple quotes that occur at the beginning of indented code blocks. For the model samples,
there is no guarantee that the DOCSTRING will be correctly closed; in such cases we simply fall back
to the untruncated target approach.

REMOVING THE CONTEXT Finally, we note that due to our dataset construction strategy, and
inspired by real-world code completion systems, our suggestions may begin partway in the middle of
an expression. We address this by concatenating the context (the prefix of the file) and the model
suggestions, pseudo-parsing the result, and then removing any node that is entirely contained in the
context after parsing. This enables us to build a tree representation of only the part of the code that
we would actually be suggesting, while still having its tree structure match the parse tree of the final
code state.

F.2 UTILITY FUNCTION CONFIGURATION

We configure our base utility function (described in Appendix D) in different ways for each task.

Edit localization task. For this task, we configure the utility function with a per-character utility
of 1 per matched SURE token and 0.7 per matched UNSURE, and a per-character cost of 1 per deleted
SURE and 0.3 per deleted UNSURE; this setting is such that tokens with a lower-than-70% chance

1https://github.com
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of being kept are optimal to mark as UNSURE. (We vary these thresholds for the Pareto plot, by
setting the UNSURE match utility to α and deletion cost to 1 − α for varying α.) We also include
a localization penalty of 5 per edit inside SURE regions, a penalty of 0.25 in UNSURE regions,
and a penalty of 0.75 for starting a new UNSURE. These costs are also tuned so that, if there is a
30%-or-greater chance of starting to edit at a given location, it is better to insert a UNSURE region
that includes the edit.

Prefix task. We use the same configuration as the edit localization task, but additionally insert
truncation nodes into the prototype suggestion, which enables us to search over points to stop the
suggestion early. For the R-U-SURE (Prefix) variant, we do not insert any Region Start / Region
End nodes, which forces the solver to label everything as SURE and only search for prefixes. For the
R-U-SURE (Prefix + Region) variant, we include both Region Start/End nodes and truncation nodes.

API call task. For this task, we restrict our attention to Python files, and do additional postprocess-
ing on both the model samples and the ground truth target in order to compute an estimated utility.
We first search through the parsed file in order to identify statements that look like function calls;
in particular, any statement that contains tokens immediately followed by an open parenthesis, and
which does not start with def or class. We then extract a list of such calls and rearrange them
into a shallow tree structure: the top level sequence is a sequence of group nodes, and each group
node contains exactly one call. We further insert region start/end nodes into each call, before and
after the parenthesis, respectively; these allow our method to decide how many attribute accesses
to include in the call (e.g. ‘foo.bar.baz(‘ or just ‘bar.baz‘) and whether or not to include arguments
or a left-hand-side assignment. For this task, we reinterpet the regions as being SURE rather than
UNSURE. Since we only care about extracting a useful subsequence, we forbid any token matches
outside of extracted regions, but set the costs of deletion and insertion to zero. We also forbid any
deletions or insertions in an extracted region to ensure that the call matches exactly (instead of just
having high token overlap). We implement this by building a simplified version of our edit distance
graph that only includes nodes for the allowed types of edit.

Within an extracted region, we compute per-token weights, which are 1 for tokens we have already
seen in the file and 10 for novel tokens (those not yet seen in the file); we also give 1 bonus point for
correctly predicting the entire argument list. We then scale this base weight by 0.7 to get the utility of
correct predictions, and scale it by 0.3 to get the penalty for incorrect ones. Note that this is the same
set of rewards and penalties as in the edit localization task, however, the break-even point is lower for
this version because deleting tokens has a penalty of 0 instead of -1.
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G DETAILED EXPERIMENTAL RESULTS

The additional detailed results provided in the appendix include:

• Figure 18: A detailed breakdown by target type (UNTRUNCATED, HEURISTIC and PY-
DOCSTRING) for both leave one out and ground truth targets, of the performance of the
R-U-SURE (Region) method.

• Figure 19a: An analysis of the duality gap achieved by our dual decomposition solver, that
shows that the optimal solution is found in the majority of cases.
• Figure 20: A plot of model performance by size of sample K which includes both leave one

out and ground truth utilities.
• Table 4, Table 5 and Table 6: Detailed versions of the tables in the main paper.
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Figure 18: Average utility (higher is better) for our R-U-SURE (Region) and a variety of baseline
methods for the uncertainty-regions task, evaluated on the ground truth (GT, left) user intent as well
as a leave-one-out (LOO, right) sample from the model, and the three target settings (corresponding
to the three rows of plots) noted in the figure titles. Note that methods that perform well in the
leave-one-out setting also tend to perform well on the ground truth, but averages are slightly better
across the board for leave-one-out.
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(a) R-U-SURE (Region).
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(b) R-U-SURE (Prefix).

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Sort Index

10 27

10 21

10 15

10 9

10 3

Du
al

ity
 G

ap
(L

og
 S

ca
le

)

Sorted Duality Gap by Setting
GT
LOO

(c) R-U-SURE (API).

Figure 19: The distribution of duality gaps presented as a log plot of the sorted values, broken down
by utility function for each figure (a)-(c), and with a separate line for each type of prediction target
(for (a) and (b)) or prediction target type (i.e. ground-truth or leave one out, for (c)). We observe that
R-U-SURE (Prefix) always obtains practically zero gap (and hence primal optimality), while e.g.
R-U-SURE (Region) does so on around 90-98% of cases, depending on the type of prediction target.

0 20 40 60
Number of Base Model Samples

30

40

50

60

70

80

To
ta

l U
til

ity

cpp
java
js
python

(a) Ground Truth.

0 20 40 60
Number of Base Model Samples

60

80

100

120

To
ta

l U
til

ity

(b) Leave one out.

Figure 20: The dependence of model performance on the number of base model samples combined by
R-U-SURE, evaluated with respect to the ground truth user intent (left) and a leave one out sample
from the base model (right). The four lines represent the four programming languages we considered.
We observe that the performance increases dramatically on the left, but that this increase is relatively
flat around our maximum considered 31 samples.
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Utility
(relative)

Est. Utility
(relative)

LOO Utility
(relative)

Sensitivity
% UNSURE of edited

Specificity
% SURE of unedited

F1 score

ALL SURE ≡ 0 38.00 30.35 0.00 100.00 -
MAXIMAL UNSURE 81.83 106.08 101.90 90.79 6.85 12.74
TOKEN PROB. 0.5 50.83 82.63 77.10 55.63 72.69 63.03
TOKEN PROB. 0.7 58.42 88.89 83.68 63.81 64.97 64.38
TOKEN PROB. 0.9 66.99 95.64 90.79 73.21 52.93 61.44
PREFIX PROB. 0.5 83.33 108.52 104.29 89.31 27.39 41.92
PREFIX PROB. 0.7 83.45 108.27 104.05 89.89 23.50 37.26
PREFIX PROB. 0.9 83.08 107.61 103.41 90.35 17.65 29.53

OURS (Region) 84.42 113.82 109.12 85.78 62.24 72.14

Table 4: Detailed results for our R-U-SURE (Region) method along with a selection of baselines, on
the edit-localization task.

GT Utility
(mean)

Est. Utility
(mean)

LOO
Utility (mean) Correct Chars Incorrect Chars

20 CHARACTERS -7.99 5.15 4.11 13.61 21.60
50 CHARACTERS -8.92 7.12 5.55 23.83 32.75

100 CHARACTERS -14.75 4.96 2.47 34.35 49.10
200 CHARACTERS -29.88 -5.04 -9.20 44.81 74.69
500 CHARACTERS -66.59 -33.18 -40.16 53.66 120.25

1 LINE -10.91 4.00 2.45 16.85 27.76
2 LINES -12.68 4.85 2.88 24.30 36.98
4 LINES -19.85 1.76 -1.04 33.75 53.59
8 LINES -37.75 -9.77 -14.31 43.97 81.72

16 LINES -65.76 -31.32 -38.14 51.82 117.58

TOKEN PROB. 0.00 -84.46 -47.36 -55.52 54.94 139.40
TOKEN PROB. 0.01 -13.46 91.15 6.31 38.85 52.32
TOKEN PROB. 0.02 -7.56 78.02 10.78 35.24 42.80
TOKEN PROB. 0.05 -2.80 63.21 13.56 30.21 33.01
TOKEN PROB. 0.10 -0.58 53.57 14.44 26.50 27.08
TOKEN PROB. 0.20 0.52 44.77 13.09 22.65 22.13
TOKEN PROB. 0.30 0.69 14.35 13.43 20.45 19.76
TOKEN PROB. 0.50 0.19 12.82 12.07 17.30 17.12
TOKEN PROB. 0.70 -1.10 10.72 10.01 14.42 15.52
TOKEN PROB. 0.90 -3.80 7.21 6.54 10.62 14.42

PREFIX PROB.0.01 0.88 48.99 15.50 24.94 24.06
PREFIX PROB.0.02 1.04 46.30 15.25 23.68 22.64
PREFIX PROB.0.05 1.03 42.62 14.64 21.83 20.80
PREFIX PROB.0.10 0.83 39.57 13.99 20.20 19.37
PREFIX PROB.0.20 0.43 36.28 14.36 18.36 17.93
PREFIX PROB.0.30 0.04 34.01 12.26 17.03 16.99
PREFIX PROB.0.50 -1.00 30.50 10.63 14.76 15.75
PREFIX PROB.0.70 -2.40 27.39 8.58 12.50 14.90
PREFIX PROB.0.90 -5.01 23.43 5.52 9.21 14.22

MAX AVG. LOG PROB -17.64 50.96 -4.08 16.66 34.31
INTELLICODE COMPOSE 0.04 12.71 11.90 17.10 17.06

OURS (PREFIX) 7.00 30.49 28.03 38.81 31.81

OURS (PREFIX+REGION) 12.26 37.79 35.18 36.40 22.31

Table 5: Comparison of utility and character-level accuracy statistics for the suggestion-length
task; R-U-SURE (Prefix) achieves higher average utility than the comparable baselines. As an
additional comparison, we include results for R-U-SURE (Prefix+Region), a variant that is also
allowed to mark some tokens UNSURE, which improves our utility metric and decreases the number
of incorrectly-predicted characters (where we only count SURE tokens as correct/incorrect).
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GT Utility
(mean)

Est. Utility
(mean)

LOO Utility
(mean)

Corr.
(total)

Corr.
(novel)

Corr.
(not novel)

Incorr.
(total)

Incorr.
(novel)

Incorr.
(not novel)

ALL FULL -8.75 -6.09 -7.15 2.02 0.33 1.68 9.64 3.28 6.36
ALL SHORT -0.58 0.70 0.10 3.00 0.68 2.32 4.60 2.07 2.53

NOVEL SHORT -1.39 -0.36 -0.94 1.18 0.68 0.50 3.04 2.07 0.96
OURS (API) 5.10 6.74 6.53 3.56 0.68 2.88 2.10 0.50 1.60

Table 6: Detailed results for our R-U-SURE (API) method along with a set of baselines.

48


	Introduction
	Problem Statement
	Approach
	Approximating True Intents With Model Samples
	Decomposing Into Independent Subproblems
	Expanding Utility Functions To Decision Diagrams
	Extending the Utility Function

	Related Work
	Experiments
	Localizing edits in code suggestions
	Selecting Suggestion Lengths
	API Discovery

	Discussion
	Example Outputs of R-U-SURE
	Runtime of R-U-SURE

	Additional related work
	Decision Diagrams: Definitions and Algorithms
	Our Definitions
	A comparison to other definitions of decision diagrams
	Efficient algorithms for max-marginal message passing on BDDs
	Extension to multivalued decision diagrams

	Utility functions and tree representation
	Tree representation
	Utility function
	Utility Configuration
	Edit-Based Decision Diagram
	Constraint Decision Diagram


	Overview of our Pseudo-Parser
	High Level Desiderata
	Algorithms

	Additional Details on the Experimental Methodology
	Example Generation
	Utility function configuration

	Detailed Experimental Results

