
Published as a workshop paper at ICLR 2023

HIERARCHICAL PROGRAMMATIC REINFORCEMENT
LEARNING VIA LEARNING TO COMPOSE PROGRAMS

Guan-Ting Liu1∗ & En-Pei Hu2∗ & Pu-Jen Cheng1 & Hung-yi Lee2 & Shao-Hua Sun2

1Department of Computer Science and Information Engineering
2Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan
{f07944014, r11921042, pjcheng, hungyilee, shaohuas}@ntu.edu.tw

ABSTRACT

Aiming to produce reinforcement learning (RL) policies that are human-
interpretable and can generalize better to novel scenarios, Trivedi et al. (2021)
present a method (LEAPS) that first learns a program embedding space to continu-
ously parameterize diverse programs from a pre-generated program dataset, and
then searches for a task-solving program in the learned program embedding space
when given a task. Despite encouraging results, the program policies that LEAPS
can produce are limited by the distribution of the program dataset. Furthermore,
during searching, LEAPS evaluates each candidate program solely based on its
return, failing to precisely reward correct parts of programs and penalize incorrect
parts. To address these issues, we propose to learn a meta-policy that composes a
series of programs sampled from the learned program embedding space. By com-
posing programs, our proposed method can produce program policies that describe
out-of-distributionally complex behaviors and directly assign credits to programs
that induce desired behaviors. We design and conduct extensive experiments in
the Karel domain. The experimental results show that our proposed framework
outperforms baselines. The ablation studies confirm the limitations of LEAPS and
justify our design choices.

1 INTRODUCTION

Deep reinforcement learning (DRL) leverages the recent advancement in deep learning by reformulat-
ing the reinforcement learning problem as learning policies or value functions parameterized by deep
neural networks. DRL has achieved tremendous success in various domains, including controlling
robots Gu et al. (2017); Ibarz et al. (2021); Lee et al. (2019; 2021), playing board games Silver et al.
(2016; 2017), and strategy games Vinyals et al. (2019); Wurman et al. (2022). Yet, the black-box
nature of neural network-based policies makes it difficult for the DRL-based systems to be interpreted
and therefore trusted by human users Lipton (2016); Puiutta & Veith (2020). Moreover, policies
learned by DRL methods tend to overfit and often fail to generalize Zhang et al. (2018); Cobbe et al.
(2019); Sun et al. (2020); Liu et al. (2022).

To address the abovementioned issues of DRL, programmatic RL methods Bastani et al. (2018); Inala
et al. (2020); Landajuela et al. (2021); Verma et al. (2018) explore various structured representations
of policies. In particular, Trivedi et al. (2021) present a framework, Learning Embeddings for
lAtent Program Synthesis (LEAPS), that is designed to produce more interpretable and generalizable
policies. Specifically, it aims to produce program policies structured in a given domain-specific
language (DSL), which can be executed to yield desired behaviors. To this end, LEAPS first learns
a program embedding space to continuously parameterize diverse programs from a pre-generated
program dataset, and then searches for a task-solving program in the learned program embedding
space when given a task described by a Markov decision process (MDP). The program policies
produced by LEAPS are not only human-readable but also achieve competitive performance and
demonstrate superior generalization ability.

*These authors contributed equally to this work

1

Published as a workshop paper at ICLR 2023

Despite its encouraging results, LEAPS has two fundamental limitations. Limited program distribu-
tion: the program policies that LEAPS can produce are limited by the distribution of the pre-generated
program dataset used for learning the program embedding space. This is because LEAPS is designed
to search for a task-solving program from the learned embedding space, which inherently assumes
that such a program is within the distribution of the program dataset. Such design makes it difficult
for LEAPS to synthesize programs that are out-of-distributionally long or complex. Poor credit
assignment: during the search for the task-solving program embedding, LEAPS evaluates each candi-
date program solely based on the cumulative discounted return of the program execution trace. Such a
design fails to accurately attribute rewards obtained during the execution trajectories to corresponding
parts in synthesized programs or penalize program parts that induce incorrect behaviors.

This work aims to address the issues of limited program distribution and poor credit assignment.
To this end, we propose a hierarchical programmatic reinforcement learning (HPRL) framework.
Instead of searching for a program from a learned program embedding space, we propose to learn
a meta-policy, whose action space is the learned program embedding space, to produce a series
of programs (i.e., predict a sequence of actions) to yield a composed task-solving program. By
re-formulating synthesizing a program as predicting a sequence of programs, HPRL can produce out-
of-distributionally long or complex programs. Furthermore, rewards obtained from the environment
by executing each program from the composed program can be accurately attributed to the program,
allowing for more efficient learning.

To evaluate our proposed method, we adopt the Karel domain Pattis (1981), which features an agent
that can navigate a grid world and interact with objects. Our method outperforms all the baselines
by large margins on a problem set proposed by Trivedi et al. (2021). To investigate the limitation of
our method, we design a more challenging problem set on which our method consistently achieves
better performance compared to LEAPS. Moreover, we inspect LEAPS’ issues of limited program
distribution and poor credit assignment with two experiments and demonstrate that our proposed
method addresses these issues. We present a series of ablation studies to justify our design choices,
including the reinforcement learning algorithms used to learn the meta-policy and the dimensionality
of the program embedding space. A detailed discussion of related work can be found in Section A.

2 PROBLEM FORMULATION

Program ρ := DEF run m(s m)

Repetition n := Number of repetitions

Perception h := frontIsClear | leftIsClear | rightIsClear |
markerPresent | noMarkerPresent

Condition b := perception h | not perception h

Action a := move | turnLeft | turnRight |
putMarker | pickMarker

Statement s := while c(b c) w(s w) | s1; s2 | a |
repeat R=n r(s r) | if c(b c) i(s i) |
ifelse c(b c) i(s1 i) else e(s2 e)

Figure 1: The domain-specific language (DSL) for
the Karel domain, features an agent that can navi-
gate through a grid world and interact with objects.

Our goal is to develop a method that can synthesize
a domain-specific, task-solving program which can
be executed to interact with an environment and
maximize a discounted return defined by a Markov
Decision Process.

Domain Specific Language. In this work, we adapt
the domain specific language (DSL) for the Karel do-
main used in Bunel et al. (2018); Chen et al. (2019);
Trivedi et al. (2021), shown in Figure 1. This DSL is
designed to describe the behaviors of the Karel agent,
consisting of control flows, agent’s perceptions, and
agent’s actions. Control flows such as if, else,
and while are allowed for describing diverging
or repetitive behaviors. Furthermore, Boolean and
logical operators such as and, or, and not can
be included to express more sophisticated conditions. Perceptions such as frontIsClear and
markerPresent are defined based on situations in an environment which can be perceived by
an agent. On the other hand, actions such as move, turnRight, and putMarker, describe the
primitive behaviors that an agent can perform in an environment. A program policy considered in our
work is structured in this DSL and can be executed to produce actions based on perceptions.

Markov Decision Process (MDP). The tasks considered in this work are defined by finite-horizon
discounted MDPs. The performance of a policy with its rollout (a sequence of states and actions
{(s0, a0), ..., (st, at)}) is evaluated based on a discounted return

∑T
t=0 γ

trt, where rt = R(st, at)
indicates the reward function and T is the horizon of the episode. We aim to develop a method
that can produce a program representing a policy that can be executed to maximize the discounted

2

Published as a workshop paper at ICLR 2023

return, i.e., maxρ Ea∼EXEC(ρ)[
∑T
t=0 γ

trt], where EXEC(·) returns the actions induced by executing
the program policy ρ in the environment. This objective is a special case of the standard RL objective
where a policy is represented as a program and its rollout is obtained by executing the program.

(a) Learning a Program Embedding Space (b) Learning a Meta-Policy to Compose Programs

i-th Predicted
Latent Program

Execute ρi

pθgψ

zi

Environment

si+1
ri+1 πmeta

si
t

ai
t

[si1, . . . , si
Ti

]
[ri1, . . . , ri

Ti
]

[-1]⋅ Σ

def run():
while(markPresent()):

PickMarker()
turnRight()
move()

ρ1

def run():
if frontIsClear():

move()
else:

turnLeft()

ρi−2

def run():
if frontIsClear():

move()
else:

turnLeft()

ρi−1

def run():
if markerPresent():

pickMarker()
else:

move()

i-th Predicted Program ρi

Composed Program
𝒫 = ⟨ρ1, . . . , ρi−2, ρi−1, ρi⟩

Latent
Program

Program ρ
def run():

if markerPresent():
pickMarker()

else:
move()

def run():
if markerPresent():

pickMarker()
else:

move()

LP

Reconstructed

Program ̂ρ

Execute

LL

qϕ pθfω gψ

z

π(a |s, z)
Environment

a1, a2, . . . , at ̂a1, ̂a2, . . . , ̂at
Learning objective

Learnable mapping

Frozen mapping

List operator

Compose

Figure 2: Hierarchical Programmatic Reinforcement Learning. (a) Learning a Program Embedding
Space: a continuously parameterized latent program space can be learned using the program encoder qϕ, decoder
pθ , and a neural executor policy π by optimizing the two reconstruction objectives: LP and LL. To reduce
the dimensionality of the program embedding space for facilitate task learning, we employ a compression
encoder fω and a compression decoder gψ . (b) Learning a Meta-Policy to Compose Programs: given a task
described by an MDP, we propose to train a meta-policy πmeta to compose a sequence of programs, and yield a
task-solving program. Specifically, at each macro time step i, the meta-policy πmeta predicts a latent program
embedding zi, which can be decoded to the corresponding program ρi = pθ(gψ(zi)). We then execute the
program ρi in the environment, which returns the cumulative reward ri+1 and the next state si+1 to the meta
policy. The meta-policy can synthesize next program ρi+1 based on si+1 to synthesize the task-solving program
P = ⟨ρ1, .., ρi−2, ρi−1, ρi⟩, until termination.

3 APPROACH

Our goal is to design a framework that can synthesize task-solving programs based on the rewards
obtained from MDPs. We adapt the idea of learning a program embedding space to continuously
parameterized a diverse set of programs proposed in LEAPS Trivedi et al. (2021). Then, instead of
searching for a task-solving program in the learned program embedding space, our key insight is to
learn a meta-policy that can hierarchically compose programs to form a more expressive task-solving
program. Our proposed framework, dubbed Hierarchical Programmatic Reinforcement Learning
(HPRL), is capable of producing out-of-distributionally long and complex programs. Moreover,
HPRL can make delicate adjustments to synthesized programs according to rewards obtained from
the environment.

Section 3.1 presents how LEAPS learns a program embedding space to continuously parameterize
a set of randomly generated programs and describes our proposed procedure to produce a dataset
containing more diverse programs. Then, to reduce the dimension of the learned program embedding
for more efficient meta-policy learning, Section 3.2 introduces how we compress the embedding
space. Finally, in Section 3.3, we describe our method for learning a meta-policy, whose action space
is the learned program embedding space, to hierarchically compose programs and yield a task-solving
program. An overview of our proposed framework is illustrated in Figure 2 and the algorithm is
detailed in Algorithm 1.

3.1 LEARNING A PROGRAM EMBEDDING SPACE

We aim to learn a program embedding space that continuously parameterizes a diverse set of programs.
Moreover, a desired program embedding space should be behaviorally smooth, i.e., programs that
induce similar execution traces should be embedded closely to each other and programs with diverging
behaviors should be far from each other in the embedding space.

3

Published as a workshop paper at ICLR 2023

To this end, we adapt the technique proposed in LEAPS (Trivedi et al., 2021), which trains an
encoder-decoder neural network architecture on a pre-generated program dataset. Specifically, a
recurrent neural network program encoder qϕ learns to encode a program ρ (i.e., sequences of program
tokens) into a program embedding space, yielding a program embedding v; a recurrent neural network
program decoder pθ learns to decode a program embedding v to produce reconstructed programs
ρ̂. The program encoder and the program decoder are trained to optimize the β-VAE Higgins et al.
(2016) objective: LP

θ,ϕ(ρ) = −Ev∼qϕ(v|ρ)[log pθ(ρ|v)] + βDKL(qϕ(v|ρ)∥pθ(v)), where β balances
the reconstruction loss and the representation capacity of the embedding space (i.e., the latent
bottleneck).

To encourage behavioral smoothness, Trivedi et al. (2021) propose two additional objectives. The
program behavior reconstruction loss minimizes the difference between the execution traces of
the given program EXEC(ρ) and the execution traces of the reconstructed program EXEC(ρ̂). On
the other hand, the latent behavior reconstruction loss brings closer the execution traces of the
given program EXEC(ρ) and the execution traces produced by feeding the program embedding
v to a learned neural program executor π(a|v, s): LL

π(ρ, π) = −E[
∑H
t=1

∑|A|
i=1 1{EXECi(ρ̂) ==

EXECi(ρ)} log π(ai|v, st)],whereH denotes the horizon of EXEC(ρ) and |A| denotes the cardinality
of the action space.

We empirically found that optimizing the program behavior reconstruction loss does not yield a
significant performance gain. Yet, due to the non-differentiability nature of program execution,
optimizing this loss via REINFORCE (Williams, 1992) is unstable. Moreover, performing on-the-
fly program execution during training significantly slows down the learning process. Therefore,
we exclude the program behavior reconstruction loss, yielding our final objective for learning a
program embedding space as a combination of the β-VAE objective LP

θ,ϕ and the latent behavior
reconstruction loss LL

π: minθ,ϕ,π LP
θ,ϕ(ρ) + λLL

π(ρ, π), where λ determines the relative importance
of these losses.

3.2 COMPRESSING THE LEARNED PROGRAM EMBEDDING SPACE

The previous section describes a method for constructing a program embedding space that continu-
ously parameterizes programs. Next, given a task defined by an MDP, we aim to learn a meta-policy
that predicts a sequence of program embeddings as actions to compose a task-solving program. Hence,
a low-dimensional program embedding space (i.e., a smaller action space) is ideal for efficiently
learning such a meta-policy. Yet, to embed a large number of programs with diverse behaviors, a
learned program embedding space needs to be extremely high-dimensional.

Therefore, our goal is to bridge the gap between a high-dimensional program embedding space
with sufficient representation capacity and a desired low-dimensional action space for learning a
meta-policy. To this end, we propose to learn to compress the program embedding space with an
encoder-decoder architecture. Specifically, we employ a compression encoder fω that takes the
output of the program encoder qϕ as input and compresses it into a lower-dimensional program
embedding z; also, we employ a compression decoder gψ that takes a program embedding as input
and decompresses it to produce a reconstructed higher-dimensional program embedding v̂, which is
then fed to the program decoder pθ to produce a reconstructed program ρ̂.

With this modification, the β-VAE objective and the latent behavior reconstruction loss can be rewrit-
ten as: LP

θ,ϕ,ω,ψ(ρ) = −Ez∼fω(z|qϕ(ρ))[log pθ(ρ|(gψ(z)))] + βDKL(fω(qϕ(z|ρ))∥pθ(gψ(z))), and

LL
π(ρ, π) = −E[

∑H
t=1

∑|A|
i=1 1{EXECi(ρ̂) == EXECi(ρ)} log π(ai|z, st)]. We train the program

encoder qϕ, the compression encoder fω , the compression decoder gψ , the program decoder pθ, and
the neural execution policy π in an end-to-end manner. We discuss how the dimension of the program
embedding space affects the quality of program reconstruction and the performance of synthesized
programs in Section 4.4.2.

3.3 LEARNING A META-POLICY TO COMPOSE THE TASK-SOLVING PROGRAM

Once an expressive, smooth, yet compact program embedding space is learned, given a task described
by an MDP, we propose to train a meta-policy πmeta to compose a task-solving program. Specifically,
the learned program embedding space is used as a continuous action space for the meta-policy πmeta,
bounded within the range of [-1.0, 1.0] for each dimension of the program embedding. We formulate
the task of composing programs as a finite-horizon MDP whose horizon is |H|. At each time step i,

4

Published as a workshop paper at ICLR 2023

the meta-policy πmeta takes an input state si, and predicts one latent program embedding zi as action,
which can be decoded to its corresponding program ρi using the learned compression decoder and
program decoder pθ(gψ(zi)). Then, the program ρi is executed with EXEC(·) to interact with the

environment for a period from 1 to T i, yielding the cumulative reward ri+1 =
∑T i

t=1 r
i
t and the next

state si+1 = [si1, s
i
2, ..., s

i
Ti
][−1] after the program execution. The operator ·[−1] returns the last

object in the sequence, and we take the last state of the program execution as the next macro input
state, i.e., si+1 = [si1, s

i
2, ..., s

i
Ti
][−1] = siTi

. Note that the time steps i considered here are macro
time steps, and each involves a series of state transitions and returns a sequence of rewards. The
environment will return the next state si+1 and cumulative reward ri+1 to the agent to predict the
next latent program embedding zi+1. The program composing process terminates after |H| steps.

The synthesized task-solving program P is obtained by sequentially composing the generated
program ⟨ρi|i = 1...|H|⟩, where ⟨·⟩ denotes an operator that concatenates programs in order to yield
a composed program. Hence, the learning objective of the meta-policy πmeta is to maximize the total
cumulative return Jπmeta : Jπmeta = EP∼πMETA

[
∑|H|
i=1 γ

i−1Ea∼EXEC(ρi)[r
i+1], where γ is the discount

factor for macro time steps MDP and a is the primitive action triggered by EXEC(ρi).

While this work formulates the program synthesis task as a finite-horizon MDP where a fixed number
of programs are composed, we can instead learn a termination function that decides when to finish
the program composition process, which is left to future work.

4 EXPERIMENTS

We design and conduct experiments to compare our proposed framework to its variants and baselines.

4.1 KAREL DOMAIN

(a) DOORKEY (b) ONESTROKE

(c) SEEDER (d) SNAKE

Figure 3: KAREL-HARD Problem Set: The
four tasks require an agent to acquire a set of
diverse, goal-oriented, and programmatic behav-
iors. This is strictly more challenging compared to
the KAREL problem set proposed in Trivedi et al.
(2021). More details can be found in Section D.

For the experiments and ablation studies, we adopt
the Karel domain (Pattis, 1981), which is widely used
in neural program synthesis and programmatic rein-
forcement learning (Bunel et al., 2018; Shin et al.,
2018; Sun et al., 2018; Chen et al., 2019; Trivedi
et al., 2021). The Karel agent in a gridworld can
navigate and interact with objects (i.e., markers). The
action and perception are detailed in Figure 1.

To evaluate the proposed framework and the base-
lines, we consider two problem sets. First, we use the
KAREL problem set proposed in Trivedi et al. (2021),
which consists of six tasks. Then, we propose a more
challenging set of tasks, KAREL-HARD problem set
(shown in Figure 3), which consists of four tasks.
In most tasks, initial configurations such as agent
and goal locations, wall and marker placements are
randomly sampled upon every episode reset.

KAREL Problem Set. The KAREL problem set in-
troduced in Trivedi et al. (2021) consists of six tasks:
STAIRCLIMBER, FOURCORNER, TOPOFF, MAZE,
CLEANHOUSE and HARVESTER. Solving these tasks
requires the following ability. Repetitive Behaviors:
to conduct the same behavior for several times, i.e., placing markers on all corners (FOURCORNER)
or move along the wall (STAIRCLIMBER). Exploration: to navigate the agent through complex
patterns (MAZE) or multiple chambers (CLEANHOUSE). Complexity: to perform specific actions,
i.e., put markers on the marked grid (TOPOFF) or pick markers on markerd grid (HARVESTER). For
further description of the KAREL problem set, please refer to Section D.1.

KAREL-HARD Problem Set. We design a more challenging set of tasks, the KAREL-HARD problem
set. The ability required to solve the tasks in this problem set can be categorized as follows: Two-
stage exploration: to explore the environment under different conditions, i.e., pick up the marker in
one chamber to unlock the door, and put the marker in the next chamber (DOORKEY). Additional

5

Published as a workshop paper at ICLR 2023

Table 1: Mean return and standard deviation of all methods across the KAREL problem set over three random
seeds. HPRL-PPO outperforms all prior approaches and achieves the maximum score on all tasks. HPRL-SAC
completely solves five out of six tasks.

Method STAIRCLIMBER FOURCORNER TOPOFF MAZE CLEANHOUSE HARVESTER

DRL 1.00 ± 0.00 0.29 ± 0.05 0.32 ± 0.07 1.00 ± 0.00 0.00 ± 0.00 0.90 ± 0.10
DRL-abs 0.13 ± 0.29 0.36 ± 0.44 0.63 ± 0.23 1.00 ± 0.00 0.01 ± 0.02 0.32 ± 0.18
VIPER 0.02 ± 0.02 0.40 ± 0.42 0.30 ± 0.06 0.69 ± 0.05 0.00 ± 0.00 0.51 ± 0.07
LEAPS 1.00 ± 0.00 0.45 ± 0.40 0.81 ± 0.07 1.00 ± 0.00 0.18 ± 0.14 0.45 ± 0.28

LEAPS-ours 1.00 ± 0.00 0.75 ± 0.43 0.76 ± 0.10 1.00 ± 0.00 0.32 ± 0.02 0.70 ± 0.03

HPRL-SAC 1.00 ± 0.00 1.00 ± 0.00 0.36 ± 0.13 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
HPRL-PPO 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Constraints: to perform specific actions under restrictions, i.e., traverse the environment without
revisiting the same position (ONESTROKE), place exactly one marker on all grids (SEEDER), and
traverse the environment without hitting a growing obstacle (SNAKE). More details about the
KAREL-HARD problem set can be found in Section D.8.

4.2 EXPERIMENTAL SETTINGS

Section 4.2.1 introduces the procedure for generating the program dataset used for learning a program
embedding pace. The implementation of the proposed framework is described in Section 4.2.2.

4.2.1 KAREL DSL PROGRAM DATASET GENERATION WITH OUR IMPROVED GENERATION
PROCEDURE

The Karel program dataset used in this work includes one million programs. All the programs are
generated based on the Karel DSL syntax rules with a maximum length of 40 program tokens. While
Trivedi et al. (2021) sample randomly to generate program sequences, we propose an improved
program generation procedure as follows. We filter out counteracting programs (e.g. termination
state equals initial state after program execution), repetitive programs (e.g. , programs with long
common sub-sequences) and programs with canceling action sequences (e.g., turnLeft followed
by turnRight). These rules significantly improve the diversity and expressiveness of the generated
programs and induce a more diverse and complex latent program space. More details can be found
in Section F.

4.2.2 IMPLEMENTATION

Encoders & Decoders. We use GRU (Cho et al., 2014) layer to implement both the program
encoder qϕ and the program decoder pθ mentioned in Section 3.1 with a hidden dimension of 256.
The last hidden state of the encoder qϕ is taken as the uncompressed program embedding v. This
program embedding v can be further compressed to a 64-dimensional program embedding z using
the compression encoder fω and compression decoder gψ constructed by the fully-connected neural
network as described in Section 3.2.

Neural Program Executor. The neural program executor π is implemented as a recurrent conditional
policy π(·|z, s) using GRU layers, which takes the abstract state and the program embedding z at
each time step as input and predicts the execution trace.

Meta-Policy. To implement the meta-policy πmeta, we use convolutional layers (Fukushima & Miyake,
1982; Krizhevsky et al., 2017) to extract features from the Karel states and then process them with
GRU layers for predicting program embeddings. To optimize the meta-policy, we use two popular
reinforcement learning algorithms, PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018),
and report their experimental results as HPRL-PPO and HPRL-SAC, respectively.

More details on hyperparameters, training procedures, and implementation can be found in Section E.

4.2.3 BASELINE APPROACHES

We compare HPRL with the following baselines.

DRL and DRL-abs. Deep RL baselines from Trivedi et al. (2021). DRL observes a raw state (grids)
input from the Karel environment, while DRL-abs is a recurrent neural network policy that takes

6

Published as a workshop paper at ICLR 2023

abstracted state vectors from the environment as input. The abstracted state vectors consist of binary
values of the current state (e.g. [frontIsClear() == True, markerPresent()==False,
...]).

Table 2: Mean return and standard deviation of all methods across
the KAREL-HARD problem set, evaluated over three random seeds.
HPRL-PPO achieves best performance across all tasks.

Method DOORKEY ONESTROKE SEEDER SNAKE

LEAPS 0.50 ± 0.00 0.65 ± 0.24 0.51 ± 0.06 0.23 ± 0.10
LEAPS-ours 0.50 ± 0.00 0.68 ± 0.11 0.56 ± 0.00 0.28 ± 0.08

HPRL-SAC 0.50 ± 0.00 0.76 ± 0.08 0.32 ± 0.10 0.25 ± 0.06
HPRL-PPO 0.50 ± 0.00 0.80 ± 0.03 0.58 ± 0.10 0.33 ± 0.12

VIPER. A programmatic RL method
proposed by Bastani et al. (2018). It
uses a decision tree to imitate the be-
havior of a learned DRL policy.

LEAPS. A programmatic RL frame-
work proposed by Trivedi et al. (2021)
that uses Cross-Entropy Method (Ru-
binstein, 1997) to search task-solving
program in a learned continuous pro-
gram embedding space.

LEAPS-ours. The LEAPS framework trained on the proposed Karel program dataset described
in Section 4.2.1. This is used to compare our proposed program dataset generation procedure with
the generation approach used by Trivedi et al. (2021).

More details of these baselines can be found in Section C.

4.3 EXPERIMENTAL RESULTS

We evaluate the performance in terms of the cumulative return of all methods on the KAREL problem
set and the KAREL-HARD problem set. The experimental results are presented in Table 1 and Table
2, respectively. The range of the cumulative return is within [0, 1] on tasks without penalty, and
within [−1, 1] on tasks with the penalty. Section D describes the detailed definition of the reward
function for each task. The performance of DRL, DRL-abs, VIPER, and LEAPS was reproduced with
the implementation provided by Trivedi et al. (2021). The average cumulative return and standard
deviation of LEAPS-ours, HPRL-PPO and HPRL-SAC on each task are evaluated over three random
seeds to ensure statistical significance. The programs synthesized by LEAPS, LEAPS-ours, and
HPRL are presented in Section H.

Overall Karel Task Performance. The experimental results on Table 1 show that HPRL-PPO
outperforms all other approaches on all tasks. Furthermore, HPRL-PPO can completely solve all the
tasks in the KAREL problem set. We also observe that LEAPS-ours outperforms LEAPS on five out
of six tasks in the KAREL problem set, showing that the proposed program generation process helps
improve the quality of the program embedding space and lead to better program search result.

Overall Karel-Hard Task Performance. To further test the efficacy of the proposed method, we
evaluate LEAPS, LEAPS-ours, HPRL-PPO, and HPRL-SAC on the KAREL-HARD problem set.
HPRL-PPO outperforms other methods on ONESTROKE, SEEDER, and SNAKE, while all approaches
perform similarly on DOORKEY. The complexity of ONESTROKE, SEEDER, and SNAKE makes
it difficult for LEAPS to find satisfactory policies from the program embedding space simply by
searching. In contrast, HPRL-PPO addresses this by composing a series of programs to increase the
expressiveness and perplexity of the synthesized program. We observe that LEAPS-ours achieve better
performance than LEAPS, justifying the efficacy of the proposed program generation procedure.

PPO vs. SAC. HPRL-SAC can still deliver competitive performance in comparison with HPRL-PPO.
However, we find that HPRL-SAC is more unstable on complex tasks (e.g. TOPOFF) and tasks with
additional constraints (e.g. SEEDER and SNAKE). On the other hand, HPRL-PPO is more stable
across all tasks and achieves better performance on both problem sets. Hence, we adopt HPRL-PPO
as our main method in the following experiments.

4.4 ADDITIONAL EXPERIMENTS

We design experiments to justify (1) whether LEAPS (Trivedi et al., 2021) and our proposed frame-
work can synthesize out-of-distributional programs (Section 4.4.1), (2) the necessity of the proposed
compression encoder and decoder (Section 4.4.2), and (3) the effectiveness of learning from dense
rewards made possible by the hierarchical design of our framework (Section B).

4.4.1 SYNTHESIZING OUT-OF-DISTRIBUTIONAL PROGRAMS

7

Published as a workshop paper at ICLR 2023

Table 3: Learning to synthesize out-of-distributional pro-
grams. HPRL demonstrates superior performance compared
to LEAPS. The gap between the two methods grows more sig-
nificant when the length of the target program increases.

Method Program Reconstruction Performance
Len 25 Len 50 Len 75 Len 100

LEAPS 0.59 (0.14) 0.31 (0.10) 0.20 (0.05) 0.13 (0.08)
HPRL 0.60 (0.03) 0.34 (0.03) 0.29 (0.03) 0.26 (0.02)

Improvement 1.69% 9.68% 45.0% 100.0%

Programs that LEAPS can produce are
fundamentally limited by the distribution
of the program dataset since it searches for
programs in the learned embedding space.
It is impossible for LEAPS to synthesize
programs that are significantly longer than
the programs provided in the dataset. This
section aims to verify this hypothesis and
evaluate the capability of generating out-
of-distributional programs. We create a
set of target programs of lengths 25, 50, 75, and 100, each consisting of primitive actions (e.g. move,
turnRight). Then, we ask LEAPS and HPRL to fit each target program based on how well the
program produced by the two methods can reconstruct the behaviors of the target program. The
reconstruction performance is calculated as one minus the normalized Levenshtein Distance between
the state sequences from the execution trace of the target program and from the execution trace of the
synthesized program.

The result is presented in Table 3. HPRL consistently outperforms LEAPS with varying target
program lengths, and the gap between the two methods grows more significant when the target
program becomes longer. We also observe that the reconstruction score of LEAPS drops significantly
as the length of target programs exceeds 40, which is the maximum program length of the program
datasets. This suggests that HPRL can synthesize out-of-distributional programs. Note that the
performance of HPRL can be further improved when setting the horizon of the meta-policy |H| to
a larger number. Yet, for this experiment, we fix it to 5 to better analyze our method. More details
about the implementation and the evaluation metrics can be found in Section G.

4.4.2 DIMENSIONALITY OF PROGRAM EMBEDDING SPACE

Table 4: Dimensionality of the Program Embedding
Space. The 64-dimensional program embedding space
demonstrates the best task performance with satisfactory
reconstruction results.

dim(z) Reconstruction Task Performance
Program Execution CLEANHOUSE SEEDER

16 81.70% 63.21% 0.47 (0.06) 0.21 (0.02)
32 94.46% 86.00% 0.84 (0.27) 0.35 (0.16)
64 97.81% 95.58% 1.00 (0.00) 0.58 (0.10)

128 99.12% 98.76% 1.00 (0.00) 0.57 (0.03)
256 99.65% 99.11% 1.00 (0.00) 0.54 (0.11)

Learning a higher-dimensional program em-
bedding space can lead to better optimization
in the program reconstruction loss and the la-
tent behavior reconstruction loss. Yet, learning
a meta-policy in a higher-dimensional action
space can be unstable and inefficient. To in-
vestigate this trade-off and verify our contribu-
tion of employing the compression encoder fω
and compression decoder gψ, we experiment
with various dimensions of program embedding
space and report the result in Table 4.

The reconstruction accuracy measures if learned encoders and decoders can perfectly reconstruct an
input program or its execution trace. The program embedding space with different dimensionalities
are also evaluated in terms of task performance in CLEANHOUSE and SEEDER since they are
considered more difficult. The result indicates that a 64-dimensional program embedding space
achieves satisfactory reconstruction accuracy and performs the best on the tasks. Therefore, we take
this dimension as the default setting for our proposed method.

5 CONCLUSION

We propose a hierarchical programmatic reinforcement learning framework, dubbed HRPL, which
re-formulates solving a reinforcement learning task as synthesizing a task-solving program that can
be executed to interact with the environment and maximize the return. Specifically, we first learn a
program embedding space that continuously parameterizes a diverse set of programs sampled from
a program dataset generated based on our proposed program generation procedure. Then, we train
a meta-policy, whose action space is the learned program embedding space, to produce a series of
programs (i.e., predict a series of actions) to yield a composed task-solving program. Experimental
results in the Karel domain on two problem sets demonstrate that our proposed framework consistently
outperforms baselines by large margins. Ablation studies justify our design choices, including the
reinforcement learning algorithms used to learn the meta-policy, and the dimensionality of the
program embedding space.

8

Published as a workshop paper at ICLR 2023

BIBLIOGRAPHY

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Association for
the Advancement of Artificial Intelligence, 2017.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. In International Conference on Learning Representations,
2017.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 2003.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. In Neural Information Processing Systems, 2018.

Rudy R Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In International Conference on
Learning Representations, 2018.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In Interna-
tional Conference on Learning Representations, 2019.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches, 2014.

Dongkyu Choi and Pat Langley. Learning teleoreactive logic programs from problem solving. In
International Conference on Inductive Logic Programming, 2005.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In International Conference on Machine Learning, 2019.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International Conference
on Machine Learning, 2017.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales, Luke
Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Growing general-
izable, interpretable knowledge with wake-sleep bayesian program learning. arXiv preprint
arXiv:2006.08381, 2020.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model for
a mechanism of visual pattern recognition. In Competition and Cooperation in Neural Nets:
Proceedings of the US-Japan Joint Seminar, 1982.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In IEEE International Conference on
Robotics and Automation, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

9

Published as a workshop paper at ICLR 2023

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2016.

Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, and Manzil Zaheer. Latent programmer:
Discrete latent codes for program synthesis. In International Conference on Machine Learning,
2021.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to
train your robot with deep reinforcement learning: lessons we have learned. The International
Journal of Robotics Research, 2021.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
programmatic policies that inductively generalize. In International Conference on Learning
Representations, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 2017.

Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt, Nathan
Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep reinforce-
ment learning. In International Conference on Machine Learning, 2021.

Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward Hu, and Joseph J. Lim. Com-
posing complex skills by learning transition policies. In International Conference on Learning
Representations, 2019.

Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J. Lim. Generalizable imitation learning
from observation via inferring goal proximity. In Neural Information Processing Systems, 2021.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 2022.

Yuan-Hong Liao, Xavier Puig, Marko Boben, Antonio Torralba, and Sanja Fidler. Synthesizing
environment-aware activities via activity sketches. In IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. Nl2bash: A corpus
and semantic parser for natural language interface to the linux operating system. In International
Conference on Language Resources and Evaluation, 2018.

Zachary C Lipton. The mythos of model interpretability. In ICML Workshop on Human Interpretabil-
ity in Machine Learning, 2016.

Guan-Ting Liu, Guan-Yu Lin, and Pu-Jen Cheng. Improving generalization with cross-state behavior
matching in deep reinforcement learning. In Autonomous Agents and Multiagent Systems, 2022.

Yunchao Liu, Jiajun Wu, Zheng Wu, Daniel Ritchie, William T. Freeman, and Joshua B. Tenen-
baum. Learning to describe scenes with programs. In International Conference on Learning
Representations, 2019.

Richard E Pattis. Karel the robot: a gentle introduction to the art of programming. John Wiley &
Sons, Inc., 1981.

Erika Puiutta and Eric M. S. P. Veith. Explainable reinforcement learning: A survey. In Andreas
Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar R. Weippl (eds.), Machine Learning and
Knowledge Extraction - International Cross-Domain Conference, CD-MAKE, 2020.

10

Published as a workshop paper at ICLR 2023

Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 1997.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Eui Chul Shin, Illia Polosukhin, and Dawn Song. Improving neural program synthesis with inferred
execution traces. In Neural Information Processing Systems, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. Nature, 2017.

Tom Silver, Kelsey R Allen, Alex K Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-shot
bayesian imitation learning with logical program policies. In Association for the Advancement of
Artificial Intelligence, 2020.

Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural program synthesis
from diverse demonstration videos. In International Conference on Machine Learning, 2018.

Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. Program guided agent. In International Conference
on Learning Representations, 2020.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 1999.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum,
and Jiajun Wu. Learning to infer and execute 3d shape programs. In International Conference on
Learning Representations, 2019.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
interpretable and generalizable policies. In Advances in Neural Information Processing Systems,
2021.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, 2018.

Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. In Neural Information Processing Systems, 2019.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 1992.

Elly Winner and Manuela Veloso. Distill: Learning domain-specific planners by example. In
International Conference on Machine Learning, 2003.

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

11

Published as a workshop paper at ICLR 2023

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al.
Outracing champion gran turismo drivers with deep reinforcement learning. Nature, 2022.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

12

Published as a workshop paper at ICLR 2023

APPENDIX

A RELATED WORK

Program Synthesis. Program synthesis methods concern automatically synthesize programs that
can transform some inputs to desired outputs. Encouraging results have been achieved in a variety
of domains, including string transformation (Devlin et al., 2017; Hong et al., 2021), array/tensor
transformation (Balog et al., 2017; Ellis et al., 2020), computer commands (Lin et al., 2018; Chen
et al., 2021; Li et al., 2022), graphics and 3D shape programs (Wu et al., 2017; Liu et al., 2019; Tian
et al., 2019), and describing behaviors of agents (Bunel et al., 2018; Sun et al., 2018; Shin et al.,
2018; Chen et al., 2019; Liao et al., 2019; Silver et al., 2020). Most existing program synthesis
methods consider task specifications such as input/output pairs, demonstrations, or natural language
descriptions. In contrast, we aim to synthesize programs as policies that can be executed to induce
behaviors which maximize rewards defined by reinforcement learning tasks.

Programmatic Reinforcement Learning. Programmatic reinforcement learning methods (Choi
& Langley, 2005; Winner & Veloso, 2003; Sun et al., 2020) explore various programmatic and
more structured representations of policies, including decision trees (Bastani et al., 2018), state
machines Inala et al. (2020), symbolic expressions (Landajuela et al., 2021), and programs drawn
from a domain-specific language Silver et al. (2020); Verma et al. (2018; 2019). Our work builds
upon Trivedi et al. (2021), whose goal is to produce program policies from rewards. We aim to
address the fundamental limitations of this work by learning to compose programs to yield more
expressive programs.

Hierarchical Reinforcement Learning. Hierarchical reinforcement learning (HRL) Sutton et al.
(1999); Barto & Mahadevan (2003); Vezhnevets et al. (2017); Bacon et al. (2017) aims to learn to
operate on different levels of temporal abstraction, allowing for learning or exploring more efficiently
in sparse-reward environments. In this work, instead of operating on pre-defined or learned temporal
abstraction, we are interested in learning with a level of abstraction defined by a learned program
embedding space to hierarchically compose programs. One can view a learned program embedding
space as continuously parameterized options or low-level policies.

B LEARNING FROM EPISODIC REWARD

We design our framework to synthesize a sequence of programs, allowing for accurately rewarding
correct programs and penalizing wrong programs (i.e., better credit assignment) with dense rewards.
In this section, we design experiments to investigate the effectiveness of this design. To this end,
instead of receiving a reward for executing each program (i.e., dense) in the environment, we modify
CLEANHOUSE and SEEDER so that they only return cumulative rewards after all |H| programs have
been executed (i.e., episodic). The learning performance is shown in Figure 4, demonstrating that
learning from dense rewards yields better sample efficiency compared to learning from episodic
rewards. This performance gain is made possible by the hierarchical design of HPRL, which can
better deal with credit assignments. In contrast, LEAPS Trivedi et al. (2021) is fundamentally limited
to learning from episodic rewards.

C METHOD DETAILS

The details of each method are described in this section.

C.1 DRL

The DRL method implements a deep neural network trained on the PPO algorithm for 2M time steps
to learn the policy that takes the raw states (grids) from the Karel environment as input and predicts
the next action. The raw state is a binary tensor representing the state of each grid.

13

Published as a workshop paper at ICLR 2023

Figure 4: Learning from Episodic Reward. We compare learning from dense and episodic rewards in
CLEANHOUSE and SEEDER. Learning from dense rewards achieves better sample efficiency in both tasks,
which is made possible by the hierarchical design of our proposed framework.

C.2 DRL-ABS

DRL-abs is a deep neural network utilizing a recurrent policy and trained on the PPO
algorithm due to the better performance compared with SAC. It is also trained for 2M
time steps. The input is the abstract state of the Karel environment instead of the Karel
raw states (grids). The abstract states are represented by [frontIsClear() == True,
leftIsClear()==False, rightIsClear()==True, markerPresent()==False,
noMarkersPresent()==True], which is a binary vector that describes the current state.

C.3 VIPER

VIPER is a programmatic RL framework proposed by Bastani et al. (2018) that uses a decision tree to
imitate the behavior of a given neural network teacher policy. Bastani et al. (2018) takes the best DRL
policy networks as its teacher policy. Since VIPER is not capable of synthesizing looping behaviors,
it can be used to testify other approaches that employ a program embedding space to synthesize more
complex programs.

C.4 LEAPS

LEAPS is a programmatic RL framework proposed by Trivedi et al. (2021). The training framework
includes two stages. First, it trains a model with an encoder-decoder architecture to learn a continuous
program embedding space. The second stage utilizes the Cross-Entropy Method Rubinstein (1997),
searching over the leaned program embedding space to optimize the program policy for each task.

C.5 LEAPS-OURS

LEAPS-ours uses the same framework as LEAPS but is trained on our proposed dataset when learning
a program embedding space.

C.6 HPRL

The overall framework of HPRL consists of two parts: The pre-trained decoder as mentioned in
Section 3.1 and the meta-policy described in Section 3.3. The decoder is constructed with a one-layer
unidirectional GRU with hidden size and input size set to 256. We further compress the latent program
space consisting of a fully-connected linear neural network with an input dimension of 256 and an
output dimension of [16, 32, 64, 128]. Please note that VAE with 256 dimensions does not include the
fully connected linear neural network. The meta policy neural network consists of the CNN neural
network as a state feature extractor and a fully-connected linear layer for the action and value branch.
The CNN neural network includes two convolutional layers. The filter size of the first convolutional
layer is 32 with 4 channel. The filter size of the second convolutional layer is 32 with 2 channel. The
output of the state embedding is flattened to a vector of the same size as the output action vector.

The pseudocode of HPRL is shown at Algorithm 1.

14

Published as a workshop paper at ICLR 2023

Algorithm 1 Hierarchical Programmatic Reinforcement Learning
Input: Program Dataset Dprogram, VAE Training Epoch Nepoch, Meta-Policy Training Step Tmeta,
Program Synthesis Step |H|
Output: Task Solving Program P

1: Initialize the program encoder qϕ and decoder pθ, compression encoder fω and decoder gψ,
neural execution policy π.

2: for epoch in range(1, Nepoch) do
3: for program ρ in Dprogram do
4: z = fω(qϕ(ρ))
5: ρ̂ = pθ(gψ(z))
6: compute Ltotal = LPθ,ϕ,ω,ϕ(ρ) + λLLπ (ρ, π)
7: fit ϕ, ω, ψ, θ, π to minimize Ltotal
8: end for
9: end for

10: Initialize a meta-policy πmeta
11: Load and fix pθ, gψ for Meta-Policy Training
12: for Training Episode in range(1, Tmeta/|H|) do
13: Receive initial state s1 from the Karel environment
14: for i in range(1, |H|) do
15: zi = πmeta(s

i)
16: ρi = pθ(gψ(zi))
17: Interact with the environment by EXEC(ρi)
18: Receive [si1, ..., s

i
T] and [ri1, ..., r

i
Ti
]

19: ri+1 =
∑T i

t=1 r
i
t

20: si+1 = [si1, s
i
2, ..., s

i
Ti
][−1]

21: end for
22: Calculate Jπmeta based on the collected (si, zi, ri+1, si+1)
23: fit πmeta to maximize Jπmeta

24: end for

D PROBLEM SET DETAILS

D.1 KAREL PROBLEM SET DETAILS

The KAREL problem set introduced in Trivedi et al. (2021) consists of six different tasks: STAIR-
CLIMBER, FOURCORNER, TOPOFF, MAZE, CLEANHOUSE and HARVESTER. The performance of
the policy networks is measured by averaging the rewards of 10 random environment initial configu-
rations. All experiments are tested on 8× 8 grid except for CLEANHOUSE. Figure 5 visualizes the
ideal end states and one of their random initial configurations of all tasks.

D.2 STAIRCLIMBER

In this task, the agent is asked to move along the stair to reach the marked grid. The initial location of
the agent and the marker are randomized near the stair with a marker on the higher end. The reward
is defined as 1 if the agent reaches the marked grid, and 0 otherwise.

D.3 FOURCORNER

The goal of the agent is to place a marker on each corner to earn the reward. Once any marker is
placed in the wrong location, the reward is 0. The reward is the number of corrected placed markers
multiplied by 0.25. The initial position of the agent is at the last row of the environment facing east.

D.4 TOPOFF

The agent is asked to place markers on marked grids and reach the destination on the rightest grid
of the bottom row in this task. The reward is defined as the consecutive correct states of the last

15

Published as a workshop paper at ICLR 2023

stairClimber

(a) STAIRCLIMBER

fourCorners

(b) FOURCORNERtopOff

(c) TOPOFF

maze

(d) MAZEharvester

(e) HARVESTERcleanHouse

(f) CLEANHOUSE

Figure 5: Illustrations of the initial and desired final state of each task in the KAREL Problem set introduced in
by Trivedi et al. (2021). Note that these illustrations are from (Trivedi et al., 2021). The position of markers,
walls, and agent’s position are randomly set according to the configurations of each tasks. More details are
provided in Section D.1.

rows until the agent puts a marker on an empty location or does not place a marker on a marked
grid. If the agent ends up on the rightest grid of the last row, a bonus reward is given. The agent is
always initiated on the leftist grid of the bottom row, while the locations of markers in the last row
are randomized.

D.5 MAZE

In this task, the agent has to navigate to reach the marked destination. The locations of markers and
the agent, as well as the configuration of the maze, are randomized. The reward is 1 if the agent
successfully reaches the marked grid or otherwise 0.

D.6 CLEANHOUSE

There is some garbage (markers) around the apartment, so the agent is asked to clean them up. The
agent will receive more rewards for collecting more markers on the grid. A grid is of size 14× 22,

16

Published as a workshop paper at ICLR 2023

which represents an apartment. The location of the agent is fixed, while the marker locations are
randomized. The reward is defined as the number of markers picked to divide the total number of
markers in the initial Karel state.

D.7 HARVESTER

The goal is to collect more markers on the grid, with markers appearing in all grids in the initial Karel
environment. The reward is defined as the number of collected markers divided by the total markers
in the initial state.

D.8 KAREL-HARD PROBLEM SET DETAILS

Since all the tasks in the original Karel benchmark are well-solved by our method, we proposed a
newly designed Karel-Hard benchmark to further evaluate the capability of HPRL. We define the state
transition functions and reward functions for DOORKEY, ONESTROKE, SEEDER, and SNAKE based
on Karel states. Each task includes more constraints and more complex structures, e.g. two-phase
structure for DOORKEY, the restriction of no revisiting for ONESTROKE.

The performance of the policy networks is measured by averaging the rewards of 10 random environ-
ment initial configurations. The range of cumulative reward in all KAREL-HARD tasks is [0.0, 1.0].
Figure 6 visualize the ideal end states and one of their random initial configurations of all tasks.

(a) DOORKEY (b) ONESTROKE

(c) SEEDER (d) SNAKE

Figure 6: Illustrations of the initial and final state of each task in the proposed KAREL-HARD Problem Set. The
position of markers, walls, and agent’s position are randomly set according to the configurations of each tasks.
More details are provided in Section D.8.

D.9 DOORKEY

An 8×8 grid is split into two areas: a 6×3 left chamber and a 6×2 right chamber. The two chambers
are unconnected in the beginning. The agent has to pick up the marker in the left chamber to unlock
the door, and then get into the right chamber to place the marker on the top of the target(marker). The
initial location of the agent, the key(marker) in the left room and the target(marker) in the right room
are randomly initialized. The reward is defined as 0.5 for picking up the key and the other 0.5 for
placing the marker on the marked grid.

D.10 ONESTROKE

The goal is to make the agent traverse all grids without revisiting. The visited grids will become a
wall and the episode will terminate if the agent hits the wall. The reward is defined as the number of

17

Published as a workshop paper at ICLR 2023

grids visited divided by the total empty grids in the initial Karel environment. The initial location of
the agent is randomized.

D.11 SEEDER

The goal is to put markers on each grid in the Karel environment. The episode will end if makers are
repeatedly placed. The reward is defined as the number of markers placed divided by the total empty
grids in the initial Karel environment. The initial location of the agent is randomized.

D.12 SNAKE

In this task, the agent acts like the head of the snake, and the goal is to eat (i.e., pass through) as much
food(markers) as possible without hitting its body. There is always exactly one marker existing in the
environment until 20 markers are eaten. Once the agent passes the marker, the snake body length
will increase by 1, and one new marker will appear on the other position of the environment. The
reward is defined as the number of markers eaten divided by 20. The locations where the markers
will appear are fixed, while the initial agent location is randomized.

E HYPERPARAMETERS AND SETTINGS

E.1 LEAPS

Following the setting of LEAPSTrivedi et al. (2021), we experiment with sets of hyperparameters
when searching the program embedding space to optimize the reward for both LEAPS and LEAPS-
ours. The settings are described in Table 5 and Table 6. S, σ, # Elites, Exp Decay and DI represent
population size, standard deviation, exponential σ decay and initial distribution, respectively.

Karel-Hard tasks

Table 5: LEAPS experiment settings on KAREL-HARD tasks.

LEAPS S σ # Elites Exp Decay DI

DOORKEY 32 0.25 0.1 False N(0, 0.1Id)
ONESTROKE 64 0.5 0.05 True N(1, 0)

SEEDER 32 0.25 0.1 False N(0, 0.1Id)
SNAKE 32 0.25 0.2 False N(0, Id)

Reconstruction tasks

Table 6: LEAPS experiment settings on Program Reconstruction tasks.

LEAPS S σ # Elites Exp Decay DI

Len 25 32 0.5 0.05 True N(0, Id)
Len 50 32 0.5 0.2 True N(0, 0.1Id)
Len 75 64 0.5 0.05 True N(0, 0.1Id)

Len 100 64 0.5 0.1 True N(0, 0.1Id)

E.2 LEAPS-OURS

Karel tasks

18

Published as a workshop paper at ICLR 2023

Table 7: LEAPS-ours experiment settings on KAREL tasks.

LEAPS-ours S σ # Elites Exp Decay DI

STAIRCLIMBER 32 0.5 0.05 True N(0, 0.1Id)
FOURCORNERS 32 0.5 0.1 True N(1, 0)

TOPOFF 64 0.25 0.05 Trie N(0, 0.1Id)
MAZE 64 0.1 0.2 False N(1, 0)

CLEANHOUSE 64 0.1 0.05 False N(1, 0)
HARVESTER 64 0.5 0.05 True N(1, 0)

Karel-Hard tasks

Table 8: LEAPS-ours experiment settings on KAREL-HARD tasks.

LEAPS-ours S σ # Elites Exp Decay DI

DOORKEY 64 0.5 0.2 True N(1, 0)
ONESTROKE 64 0.5 0.05 False N(0, Id)

SEEDER 32 0.25 0.1 False N(1, 0)
SNAKE 32 0.25 0.05 False N(0, 0.1, Id)

E.3 HPRL

Pretraining VAE

• Latent embedding size: 64
• GRU Hidden Layer Size: 256
• # GRU layer for encoder/decoder: 1
• Batch Size: 256
• Nonlinearity: Tanh()
• Optimizer: Adam
• Learning Rate: 0.001
• Latent Loss Coefficient (β): 0.1

RL training on Meta Policies

The Hyperparameters for HPRL-PPO and HPRL-SAC training are reported in Table 9. For each task,
we test on 3 different random seeds and take the average to measure the performance.

F THE KAREL PROGRAM DATASETS GENERATION

The Karel program dataset used in this work includes 1 million program sequences, with 85% as
the training dataset and 15% as the evaluation dataset. In addition to sequences of program tokens,
the KAREL program dataset also includes execution demonstrations (e.g. state transition and action
sequence) of each program in the dataset, which can be used for the latent behavior reconstruction
loss described in Section 3.1.

To further improve the data quality, we added some heuristic rules while selecting data to filter out
the programs with repetitive or offsetting behavior. The unwanted programs that we drop while
collecting data are mainly determined by the following rules:

• Contradictory Primitive Actions: turnLeft followed by turnRight, pickMarker fol-
lowed by putMarker, or vice versa.

• Meaningless Programs: end_state == start_state after program execution
• Repetitive behaviors: a program that has the longest common subsequence of tokens longer than 9

We further analyze the distribution of the generated program sequences based on the control flow
(e.g., IF, IFELSE) and loop command (e.g., WHILE, REPEAT). The statistical probabilities of
programs containing control flow or loop commands are listed in Table 10. Results show that more
than 40% of the programs in the collected program sequences contain at least one of the control of
loop commands, ensuring the diversity of the generated programs.

19

Published as a workshop paper at ICLR 2023

Table 9: Hyperparameters of HPRL-PPO and HPRL-SAC Training

Training
Settngs SAC PPO

Max # Subprogram 5 5
Max Subprogram Length 40 40

Batch Size 1024 256

Specific Parameters

Init. Temperatur: 0.0002
Actor Update Frequency: 200
Critic Target Update Frequency: 200
Num Seed Steps: 20000
Reply Buffer Size: 5M
Training Steps: 25M
Alpha Learning Rate: 0.0001
Actor Learning Rate: 0.0001
Critic Learning Rate: 0.00001
β: [0.9, 0.999]
Critic τ : 0.005
Number of parallel actors: 16
Discount factor: 0.99
Q-critic Hidden Dimension: 16

Learning Rate: 0.00005
Entropy Coefficient: 0.1
Rollout Size: 12800
Eps: 0.00001
α: 0.99
γ: 0.99
Use GAE: True
GAE lambda: 0.95
Value Loss Coefficient: 0.5
Clip Param: 0.2
max grad. norm.: 0.5
Update Epoch: 3
clip param.: 0.2
Training Steps: 25M

Table 10: The statistical distribution of programs containing each token in our generated dataset.

IFELSE IF WHILE REPEAR

Our Dataset 41% 47% 54% 22%

G MORE ON LEARNING TO SYNTHESIZE OUT-OF-DISTRIBUTIONAL
PROGRAMS

Measure the Performance. To measure the performance of programs synthesized by different
methods, we first collect and execute each target program, yielding a target state sequence τtarget =
[s1, s2, . . . , sTtarget

]. Then, we reset the Karel environment to the initial state s1. For our proposed
framework, we synthesize a sequence of programs with the following procedure and optimize a
program reconstruction reward to match the target program. As described in Section 3.3, at each
macro training time step n, 1 ≤ n ≤ |H|, we collect the state sequence τP = [sP1 , s

P
2 , . . . , s

P
TP

] from
the executing of task-solving program P = ⟨ρi|i = 1, .., n⟩, and calculate the program reconstruction
reward rn = 1−D(τtarget, τP) where D is the normalized Levenshtein distance. For executing the
programs synthesized by LEAPS and LEAPS-ours, we simply start executing programs after resetting
the Karel environment to the initial state s1 and calculating the return. A Python implementation that
calculates the program reconstruction performance is as follows.

1 import numpy as np
2

3 def _compare_demos(demo1, demo1_len, demo2, demo2_len):
4 if demo2_len == 0: return 0
5 if demo1_len == 1 and demo2_len == 1: return 1
6 distances = np.zeros((demo1_len + 1, demo2_len + 1))
7 for t1 in range(demo1_len + 1):
8 distances[t1][0] = t1
9 for t2 in range(demo2_len + 1):

10 distances[0][t2] = t2
11 a = 0
12 b = 0
13 c = 0
14 for t1 in range(1, demo1_len + 1):
15 for t2 in range(1, demo2_len + 1):
16 if np.array_equal(demo1[t1-1], demo2[t2-1]):

20

Published as a workshop paper at ICLR 2023

17 distances[t1][t2] = distances[t1 - 1][t2 - 1]
18 else:
19 a = distances[t1][t2 - 1]
20 b = distances[t1 - 1][t2]
21 c = distances[t1 - 1][t2 - 1]
22 if (a <= b and a <= c):
23 distances[t1][t2] = a + 1
24 elif (b <= a and b <= c):
25 distances[t1][t2] = b + 1
26 else:
27 distances[t1][t2] = c + 1
28 return 1.0 - ((distances[demo1_len][demo2_len]) / (max(demo1_len,

demo2_len)-1))

21

Published as a workshop paper at ICLR 2023

H SYNTHESIZED PROGRAMS

In this section, we provide qualitative results (i.e., synthesized programs) of our proposed framework
(HPRL-PPO), LEAPS, and LEAPS-ours. The programs synthesized for the tasks in the KAREL
problem set are shown in Figure 7 (STAIRCLIMBER, TOPOFF) Figure 8 (CLEANHOUSE), Figure 9
(FOURCORNER, MAZE), and Figure 10 (HARVESTER). The programs synthesized for the tasks in
the KAREL-HARD problem set are shown in Figure 11 (DOORKEY), Figure 12(ONESTROKE), and
Figure 13 (SEEDER and SNAKE).

Karel Programs

STAIRCLIMBER
LEAPS
DEF run m(

WHILE c(noMarkersPresent
c) w(

turnRight
move
w)

WHILE c(rightIsClear c) w
(

turnLeft
w)

m)

LEAPS-ours
DEF run m(

turnRight
turnRight
WHILE c(noMarkersPresent

c) w(
turnRight
move
w)

m)

HPRL-PPO
DEF run m(

WHILE c(noMarkersPresent
c) w(

turnRight
move
turnRight
move

w)
m)

TOPOFF
LEAPS
DEF run m(

WHILE c(noMarkersPresent
c) w(

move
w)

putMarker
move
WHILE c(not c(

markersPresent c) c)
w(

move
w)

putMarker
move
WHILE c(not c(

markersPresent c) c)
w(

move
w)

putMarker
move
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
m)

LEAPS-ours
DEF run m(

WHILE c(not c(
rightIsClear c) c) w
(

WHILE c(not c(
markersPresent c
) c) w(

move
w)

putMarker
move
w)

WHILE c(not c(
rightIsClear c) c) w
(

pickMarker
w)

m)

HPRL-PPO
DEF run m(

move
move
REPEAT R=5 r(

move
WHILE c(

noMarkersPresent
c) w(

move
w)

putMarker
r)

m)

Figure 7: Example programs on Karel tasks: STAIRCLIMBER and TOPOFF. The programs with best
rewards out of all random seeds are shown.

22

Published as a workshop paper at ICLR 2023

CLEANHOUSE
LEAPS
DEF run m(

WHILE c(noMarkersPresent
c) w(

turnRight
move
move
turnLeft
turnRight
pickMarker
w)

turnLeft
turnRight
m)

LEAPS-ours
DEF run m(

move
WHILE c(noMarkersPresent

c) w(
turnRight
move
WHILE c(frontIsClear

c) w(
move
pickMarker
w)

w)
m)

HPRL-PPO
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(

REPEAT R=4 r(
turnRight
move
pickMarker
move
r)

r)
r)

m)
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(

REPEAT R=4 r(
REPEAT R=4 r(

turnRight
move
pickMarker
move
r)

r)
r)

r)
m)

DEF run m(
REPEAT R=4 r(

REPEAT R=4 r(
REPEAT R=4 r(

pickMarker
move
turnRight
move
r)

r)
r)

m)

Figure 8: Example programs on Karel tasks: CLEANHOUSE. The programs with best rewards out of all
random seeds are shown.

23

Published as a workshop paper at ICLR 2023

FOURCORNER
LEAPS
DEF run m(

turnRight
move
turnRight
turnRight
turnRight
WHILE c(frontIsClear c) w

(
move
w)

turnRight
putMarker
WHILE c(frontIsClear c) w

(
move
w)

turnRight
putMarker
WHILE c(frontIsClear c) w

(
move
w)

turnRight
putMarker
WHILE c(frontIsClear c) w

(
move
w)

turnRight
putMarker
m)

LEAPS-ours
DEF run m(

REPEAT R=5 r(
WHILE c(frontIsClear

c) w(
move
w)

IFELSE c(not c(
rightIsClear c)
c) i(

turnLeft
putMarker
i)

ELSE e(
putMarker
e)

r)
m)

HPRL-PPO
DEF run m(

move
move
WHILE c(frontIsClear c) w

(
move
w)

turnLeft
putMarker
m)

DEF run m(
move
move
WHILE c(frontIsClear c) w

(
move
w)

putMarker
WHILE c(frontIsClear c) w

(
move
w)

turnLeft
m)

DEF run m(
move
move
WHILE c(frontIsClear c) w

(
move
w)

putMarker
turnLeft
putMarker
WHILE c(frontIsClear c) w

(
move
w)

putMarker
putMarker
m)

MAZE
LEAPS
DEF run m(

IF c(frontIsClear c) i(
turnLeft
i)

WHILE c(noMarkersPresent
c) w(

turnRight
move
w)

m)

LEAPS-ours
DEF run m(

turnRight
turnRight
WHILE c(noMarkersPresent

c) w(
turnRight
move
w)

m)

HPRL-PPO
DEF run m(

WHILE c(noMarkersPresent
c) w(

move
turnRight
w)

move
m)

Figure 9: Example programs on Karel tasks: FOURCORNER and MAZE. The programs with best rewards
out of all random seeds are shown.

24

Published as a workshop paper at ICLR 2023

HARVESTER
LEAPS
DEF run m(

turnLeft
turnLeft
pickMarker
move
pickMarker
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
turnLeft
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
turnLeft
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
turnLeft
pickMarker
move
pickMarker
move
pickMarker
move
m)

LEAPS-ours
DEF run m(

WHILE c(leftIsClear c) w(
REPEAT R=4 r(

pickMarker
move
r)

turnLeft
pickMarker
move
turnLeft
pickMarker
move
w)
turnLeft
pickMarker
turnLeft

m)

HPRL-PPO
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(

pickMarker
turnRight
move
pickMarker
turnRight
move
pickMarker
move
pickMarker
move
r)

turnRight
pickMarker
move
pickMarker
move
pickMarker
move
r)

m)

Figure 10: Example programs on Karel tasks: HARVESTER. The programs with best rewards out of all
random seeds are shown.

25

Published as a workshop paper at ICLR 2023

Karel-Hard Programs

DOORKEY
LEAPS
DEF run m(

move
turnRight
putMarker
pickMarker
move
WHILE c(leftIsClear c) w(

pickMarker
move
w)

m)

LEAPS-ours
DEF run m(

WHILE c(rightIsClear c) w
(

turnRight
pickMarker
turnLeft
pickMarker
pickMarker
pickMarker
pickMarker
move
turnLeft
move
w)

m)

HPRL-PPO
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(

turnRight move
pickMarker move
pickMarker move
r)

pickMarker move r)
m)

DEF run m(
REPEAT R=5 r(

turnRight move
REPEAT R=5 r(move r)
move pickMarker move
r)

m)
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(

turnRight move
REPEAT R=3 r(

move
pickMarker

move
pickMarker
r)

r)
r)

m)
DEF run m(

REPEAT R=4 r(
REPEAT R=4 r(

turnRight move
pickMarker move
pickMarker
REPEAT R=2 r(

pickMarker
move

pickMarker
pickMarker
r)

r)
r)

m)
DEF run m(

REPEAT R=4 r(
turnRight
REPEAT R=4 r(

turnRight move
move

pickMarker move
r)

move pickMarker move
r)

move pickMarker
m)

Figure 11: Example programs on Karel-Hard tasks: DOORKEY. The programs with best rewards out of all
random seeds are shown.

26

Published as a workshop paper at ICLR 2023

ONESTROKE
LEAPS
DEF run m(

REPEAT R=9 r(
turnRight
turnRight
WHILE c(frontIsClear

c) w(
move
w)

turnRight
WHILE c(frontIsClear

c) w(
move
w)

r)
turnRight
m)

LEAPS-ours
DEF run m(

turnRight
WHILE c(frontIsClear c) w

(
WHILE c(frontIsClear

c) w(
WHILE c(

frontIsClear
c) w(

WHILE c(
frontIsClear
c) w(

move
w)

turnRight
w)

turnRight
w)

turnRight
w)

turnRight
m)

HPRL-PPO
DEF run m(

WHILE c(frontIsClear c) w
(move w) turnRight

WHILE c(frontIsClear c) w
(move w) turnRight

WHILE c(frontIsClear c) w
(move w) turnRight

m)
DEF run m(

WHILE c(frontIsClear c) w
(move w) turnRight

WHILE c(frontIsClear c) w
(move w) turnRight

WHILE c(frontIsClear c) w
(move w) turnRight

m)
DEF run m(

WHILE c(frontIsClear c) w
(move w) turnRight

WHILE c(frontIsClear c) w
(move w) turnRight

WHILE c(frontIsClear c) w
(move w) turnRight

WHILE c(frontIsClear c) w
(move w) turnRight

m)
DEF run m(

WHILE c(frontIsClear c) w
(move w) turnRight

WHILE c(frontIsClear c) w
(move w) turnRight

WHILE c(frontIsClear c) w
(move w) turnRight

m)

Figure 12: Example programs on Karel-Hard tasks: ONESTROKE. The programs with best rewards out of
all random seeds are shown.

27

Published as a workshop paper at ICLR 2023

SEEDER
LEAPS
DEF run m(

WHILE c(noMarkersPresent
c) w(

turnRight
putMarker
move
move
w)

turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
m)

LEAPS-ours
DEF run m(

WHILE c(noMarkersPresent
c) w(

putMarker
move
turnRight
move
w)

turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
turnRight
m)

HPRL-PPO
DEF run m(

putMarker move
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
m)

DEF run m(
putMarker move
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
putMarker move
m)

DEF run m(
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
putMarker move
turnRight move
m)

DEF run m(
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
putMarker move
turnRight move

DEF run m(
putMarker move
putMarker move
putMarker move
putMarker move
turnRight move
putMarker move
turnRight move
m)

SNAKE
LEAPS
DEF run m(

turnRight
turnLeft
pickMarker
move
move
move
WHILE c(rightIsClear c) w

(
turnLeft
move
move
w)

turnLeft
turnLeft
turnLeft
turnLeft
m)

LEAPS-ours
DEF run m(

move
turnRight
pickMarker
pickMarker
WHILE c(rightIsClear c) w

(
turnLeft
move
move
w)

turnRight
move
move
move
m)

HPRL-PPO
DEF run m(

move
WHILE c(noMarkersPresent

c) w(
move
move
turnLeft
w)

move
turnLeft
m)

DEF run m(
move
WHILE c(noMarkersPresent

c) w(
move
move
turnLeft
w)

m)
DEF run m(

move
WHILE c(noMarkersPresent

c) w(
move
move
turnLeft
w)

move
turnLeft
m)

Figure 13: Example programs on Karel-Hard tasks: SEEDER and SNAKE. The programs with the best
reward out of all random seeds are shown.

28

	Introduction
	Problem Formulation
	Approach
	Learning a Program Embedding Space
	Compressing the Learned Program Embedding Space
	Learning a Meta-Policy to Compose the Task-Solving Program

	Experiments
	Karel domain
	Experimental Settings
	Karel DSL Program Dataset Generation with Our Improved Generation Procedure
	Implementation
	Baseline Approaches

	Experimental Results
	Additional Experiments
	Synthesizing Out-of-Distributional Programs
	Dimensionality of Program Embedding Space

	Conclusion
	Bibliography
	
	Related Work
	Learning from Episodic Reward
	Method Details
	DRL
	DRL-abs
	VIPER
	LEAPS
	LEAPS-ours
	HPRL

	Problem Set Details
	Karel Problem Set Details
	StairClimber
	FourCorner
	TopOff
	Maze
	CleanHouse
	Harvester
	Karel-Hard Problem Set Details
	DoorKey
	OneStroke
	Seeder
	Snake

	Hyperparameters and Settings
	LEAPS
	LEAPS-ours
	HPRL

	The Karel Program Datasets Generation
	More on Learning to Synthesize Out-of-distributional Programs
	Synthesized Programs

