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ABSTRACT

Permutations are the most general abstraction describing finitary actions affect-
ing finitely many elements, yet also the simplest class of programs imaginable.
We propose a neural model that, given input-output pair examples, finds both a
minimal set of atomic operations and the programs mapping inputs to outputs in
terms of these atoms. Our model, DISPER, achieves 100% program reconstruc-
tion accuracy when the atoms are known and performs well even when tasked with
identifying distinct groups of atomic operations in a single configuration. Further,
DISPER is capable of reconstructing all groups of order less than 10 with recall of
89.5% and consistently produces high-quality minimal atom sets across a variety
of permutation program induction scenarios.

1 INTRODUCTION

Permutations are a powerful abstraction that enables the description of those actions on finitely
many elements that are themselves finite in their nature. More broadly, anytime a finite set of
elements is being manipulated by actions which are invertible and have deterministic compositions,
permutations can be employed to model the situation. This is a practical consequence of Cayley’s
theorem, which states that any group is isomorphic to a permutation group.

The various results of group actions on a collection of elements are often schematised by listing
them in a tuple. A permutation P can then be partially or completely described by giving the
tuple before and after applying P . For example, the input 4-tuple x = [1, 2, 3, 4] and output y =
[2, 1, 4, 3] characterise the permutation P = (12) (34), represented in cyclic notation, as P is the
only permutation such that y = Px. Forming a complete description of P from one input-output
pair is only possible when all elements of x, y are distinct. It would not be possible to identify P
uniquely if x = [1, 1, 3, 4] , y = [1, 1, 4, 3] as x, y would tell us nothing about the effect P has in the
span of the first two elements of x. In general, multiple pairs are needed if elements can be repeated
within a tuple.

Permutations can be seen as the simplest class of programs possible, characterised by languages
entirely recognisable by machines with a single tape of fixed size. There is no notion of control flow
and no explicit concept of memory, although limited memory can always be simulated by fencing
out a segment of the permutation that will be ignored in reading of the computation’s result.

Despite their simplicity, the space of all permutations grows super-exponentially with the number
of elements. Fortunately, all complex permutations can ultimately be seen as a composition of a
chain of atomic (primitive) operations or atoms, of whom there is generally comparatively handful.
As an example, all cyclic k-right-shifts of the 5-tuple [1, 2, 3, 4, 5] (for example [4, 5, 1, 2, 3] or
[5, 1, 2, 3, 4]) are simply the atomic cycle (12345) applied k times. Let w be the number of elements
being acted on, with the after-action state characterised by their positions in a w-tuple. Then there
are w! possible actions, each representable as a composition of at most w−1 distinct atoms that may
be used arbitrarily many times. This follows from the Cayley’s theorem and the fact that adjacent
transpositions span the symmetric group Sw.

We view permutations as a natural starting point for end-to-end program synthesis. Permutations are
powerful enough to capture intricate phenomena at scale but still simple enough to admit systematic
analysis and evaluation. We therefore put them at the centre of our study and set their reconstruction
from examples of input-output pairs as our aim.
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Let A = {a1, a2, . . . , ak} be atomic permutations. A permutation program P is a composition of
powers of atoms in arbitrary order P : aj1i1a

j2
i2
· · · ajkik for ai• ∈ A. Let P be a finite set of permutation

programs, D := { (x, y) : y = Px for P ∈ P } a dataset of input-output examples. Our goal is to
find a set of atomic permutations A′ from knowing only D such that that for each pair (x, y) ∈ D
we can use A′ to form a program that permutes x into y, and further, such that the cardinality of A′

is minimal or at least very small.

We present DISPER, a neural model that succeeds at this goal in multiple settings. We note that
the same model architecture routinely achieves 100% accuracy (100% recall and closure overlap, cf.
Section 4) in the simplified, synthesis-only scenario, where the atomic operations are known upfront.
But, in order to succeed at the wider atomisation-synthesis objective where atoms are not known,
our model must be able to iteratively form hypotheses about the atoms and at the same time already
use them in the synthesis of candidate programs. In other words, DISPER has to both “disentan-
gle” larger permutations into smaller, (near-)ground-truth atomic operations, and learn to selectively
combine them to reconstruct original programs mapping x to y. DISPER’s key characteristic is that
it does so without employing an external search strategy or forming Bayesian priors about feasibility
of various atoms – in contrast to classical program synthesis approaches, DISPER is an end-to-end
neural model.

We evaluate DISPER against a set of natural baseline models, trained to output a sequence of atomic
permutations directly. We find that DISPER outperforms the baselines, and further, that it benefits
from architectural simplicity in its decision logic. We also note that the problem of decomposing a
set of permutations into a set of smaller, atomic permutations is a problem conceptually similar to but
substantially different from disentanglement as seen for example in computer vision. In particular,
the order of factors of a successfully disentangled encoder representation of an image does not
matter, whereas in the case of permutations, the order of the atomic or “factor” permutations has
an effect on the resulting permutation. Hence, models such as variational autoencoders have no
straightforward application in this context.

Our contributions are:

• the introduction of DISPER, a novel neural network model for neural permutation synthesis
that identifies a set of primitive operations and simultaneously uses them for synthesis of
programs,

• the evaluation of DISPER against baselines set by common neural network architectures,

• the collection of input representations and evaluation datasets for the problem, and

• the application of this model to the task of finding a minimal generating set for all groups
of order ≤ 10.

In Appendix A, we also give an analysis concerning the effects of loss hyperparameters controlling
the flow of the learning process, the quality of proposed atom sets, and the lengths of the synthesised
programs.

2 RELATED WORK

Program induction (or synthesis) has lately been gaining traction and admitting approaches in fields
ranging from algorithmic theory and verification to statistics and machine learning.

Algorithmic program synthesis (Bodı́k & Jobstmann, 2013), traditionally considered a problem in
deductive theorem proving, has recently been looked at as a search problem with constraints such
as a logical specification of the program behaviour (Feng et al., 2018), syntactic template (Alur
et al., 2018; Desai et al., 2016; Polozov & Gulwani, 2015), and, most recently, previously discovered
program fragments and utility functions (Huang et al., 2021; Ellis et al., 2021). Several new methods
also combine enumerative search with deduction, aiming to rule out infeasible sub-programs as soon
as possible (Feng et al., 2017; Feser et al., 2015; Polikarpova et al., 2016). While some of the above
methods use neural approaches, none of them provide an end-to-end neural solution, and mostly
use deep networks as means of acceleration of otherwise enumerative program search. A further
negative result comes in the form of the immense difficulty to leverage deep neural networks to learn
even the simplest of computational patterns in a way that generalises out of the training distribution
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Figure 1: A schema of the architecture of the DISPER neural network. x, y-pairs of tuples w = 5
elements wide with x drawn from {a, b, c, d, e} with replacement enter the network through the
naive reconstructor unit. From there on, the multi-headed control unit decides on the combination
of learned atoms that is to be used, producing a program consisting of nlength = 6 instructions. Each
instruction is a softmax choice over natoms = 4 atoms being learned. Finally, the choice mixtures
of atoms are multiplied to give a program candidate, which is in turn applied to x to produce the
output.

(Belcak & Wattenhofer, 2022b). An end-to-end neural solution to combinatorial circuit synthesis
(not permitting saving of states between phases of computation) has been proposed in Belcak &
Wattenhofer (2022a). In all of this previous work, however, the atomic operations are provided in
advance and only learned to be combined and composed to form longer programs.

The learning of permutations – a fundamentally very discrete concept – has been given only very
little attention in deep learning research, with most of the work in the field being focused at the exact
opposite goal of designing and training networks that are permutation-invariant (Mukhopadhyay
et al., 2022), especially in the context of graph neural networks (Keriven & Peyré, 2019; Niu et al.,
2020). Standing out is AutoShuffleNet (Lyu et al., 2020), which learns to permute image channels
in a computer vision pipeline. Authors propose a Lipschitz-continuous loss that enforces double-
stochasticity and report high accuracy of learned permutations. In Section 3, we give a loss that
enforces only right-stochasticity and observe that our loss is very similar to the second term of the
loss suggested by AutoShuffleNet. Our loss is not only Lipschitz continuous but also differentiable.

3 MODEL

Our model takes a dataset of input-output pairs of w-tuples (w standing for width) as input and
produces a set of candidate atomic permutations A′ as output. Individual programs as compositions
of atoms can then be read out by presenting the model with particular input-output pairs.

The model consists of a neural network controlled by loss functions akin to those seen in Lyu et al.
(2020) and disentangling variational auto-encoders Higgins et al. (2016); Chen et al. (2018). It is
trained in a conventional, linear manner.

3.1 ARCHITECTURE

The neural network takes a pair of w-tuples x, y as input and produces a permutation of x for output.
It consists of five units used in succession to produce the permutation that is eventually applied to x.
See Figure 1 for an overview.

3.1.1 NAIVE RECONSTRUCTOR

The naive reconstructor attempts to recreate the permutation matrix that turned x into y. Considering
x, y as two w-dimensional column vectors, it computes the naive reconstruction matrix NR by

diff (x, y) = x⊗ 1w×1 − 1w×1 ⊗ y, NRij (x, y) = 1−
diff (x, y)2ij

maxkl diff (x, y)2kl
,

where ⊗ denotes the outer product and 1w×1 is the w-dimension column vector consisting solely of
ones.
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3.1.2 CONTROL UNIT

The control unit consists of nheads heads and a combinator. Each head is a ReLU-activated network
consisting of two layers of widths 24 and 8 respectively and densely connected to the output of
naive reconstructors. The combinator has a hidden ReLU-activated layer wcombinator neurons wide
that spans across the outputs of head, and a linear final layer containing natoms ×nlength neurons. The
control unit is 4 layers deep in total.

3.1.3 PROGRAM CHOICES

The choices from among the atomic permutations are formed by reshaping the output of control unit
into a natoms × nlength-matrix and then taking softmax across the first (atom) dimension, yielding C.
This can be interpreted as having a list of nlength instructions (columns of C), where each instruction
is a soft choice from among the atoms.

3.1.4 ATOM MATRICES

Atoms A1, . . . , Anatoms are simply learnable w × w-matrices with softmax computed across their
rows. The row softmax ensures that the matrices are all left-stochastic. Right-stochasticity (and
therefore double-stochasticity) is then enforced with the help of the heterogeneity loss (cf. Sec-
tion 3.2).

3.1.5 EXECUTION UNIT

The final unit of the network, the execution unit, takes the program choices, computes a sum of all
atoms per program instruction weighted by the softmax choice, and then takes the matrix product.
Denoting the i, j-coordinate of C by (C)ij ,

P =

nlength∏
i=1

natoms∑
j=1

(C)ijAj

 .

To produce the final output, the synthesised permutation P is applied to x.

3.2 LOSS

The total training loss is computed as a weighted sum of the reconstruction, eye divergence, right-
stochasticity, and heterogeneity losses:

L = RL + βEDL + γRSL + δHL,

where 0 ≤ α, β, γ are hyperparameters of the model.

3.2.1 RECONSTRUCTION LOSS

To train the model to reconstruct the permutation output through atom matrices, we may use any
loss that increases with growing disagreement between the elements of model output Px and y. In
our settings, we use point-wise binary cross entropy when x, y are one-hot vectors encoding distinct
elements, and mean squared error when x, y are tuples of integers. In general, any loss may be used
as long as it differentiably captures the differences between distinct elements.

3.2.2 “EYE DIVERGENCE” LOSS

A loss is introduced to encourage the model to use fewer atom whenever possible, and this loss
can be thought of as a naive counterpart to the Kullback-Leibler divergence commonly appearing in
variational autoencoders Higgins et al. (2016); Chen et al. (2018). A typical example of its effect
can be seen in Figure 2, where we observe gradual discardment of information in the second atom
from the bottom once two sufficient generators have been established (60th epoch onwards).
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Figure 2: The evolution of atoms as the model in-
stance learns to synthesize programs of D6. Hor-
izontally: training progress. Vertically: individ-
ual atomic matrices from among which program
choices are made. Light/dark colours represent
values close to 0/1. DISPER succeeds at finding
a minimal generating set for the group, namely
{ (12) (34) (56) , (135) (246) }. The former is the
generator of reflections in the axis of symmetry,
the latter is the rotation generator.

The eye divergence loss is the mean of the
squares of differences between the diagonals of
atoms and the diagonal of the identity (“eye”)
matrix. Denoting (Ak)ij the i, j-coordinate of
the k-th atom,

EDL =
1

natomsw

natoms∑
k=1

w∑
i=1

(
1− (Ak)jj

)2
Thus, the contribution of any atom that is iden-
tity matrix is 0, and the contribution of any
atomic operation that leaves no element un-
moved is 1

natoms
.

3.2.3 RIGHT-STOCHASTICITY LOSS

The right-stochasticity loss enforces the forma-
tion of right-stochastic matrices. Together with
atom softmax giving left-stochasticity, the re-
sulting atoms are doubly-stochastic and thus
candidates for sharpening towards permuta-
tions.

RSL =
1

natomsw

natoms∑
k=1

w∑
j=1

(
1−

w∑
i=1

(Ak)ij

)2

3.2.4 HETEROGENEITY LOSS

To encourage the use of fewer distinct atoms when synthesizing a program for given x, y, we increase
the total loss proportionally to the number of different atoms used. This is to further support the
model towards arriving at collections of atoms that are minimal or at least small.

HL =
1

natoms

natoms∑
i=1

σ

K

1−
nlength∑
j=1

(C)ij

 ,

where σ is the logistic (sigmoid) function K influences the sharpness of the sigmoidal transition.
Throughout our experimentation we kept K = 10 fixed. A simple max (•, 0) could also be used in
place of σ (K•), but we have decided for the latter to keep the transition gradual and differentiable
around 0.

3.3 TRAINING

Our architecture is largely indifferent to the input representation of input-output pairs, as long as the
representation admits clear disambiguation between distinct elements by an appropriate, differen-
tiable loss. We have tested our model on two natural element types, one-hot vectors, and integers
drawn from a bounded range, and give our results in Section 4. Here we just note that the values of
hyperparameters have to be adjusted in line with the scale of the reconstruction loss, which in turn
depends on the loss function and input representation used.

Training of DISPER requires no special curriculum, and once the hyperparameters are set, it can be
trained using the standard deep learning approach of batching and repeating training over the same
dataset in epochs. Figures 2 and 3 show the progression of DISPER’s training for all programs of
D6 – the dihedral group of order 6 representing the symmetries of an equilateral triangle – including
the evolution of atoms, training curves, and ratios of the losses.

4 EXPERIMENTS

In this section we systematically evaluate the abilities of DISPER across a variety of datasets and
forms of input, and against baseline models.
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(a) (b)

Figure 3: A quantitative look on the progression of DISPER’s training for D6 with β = 0.05, γ =
0.05, δ = 0. The left figure gives the absolute values for individual loss components before scaling
by hyperparameters. while the figure on the right shows the total loss in terms its components after
β, γ, δ-scaling. We see that the right-stochasticity loss plays a significant role in the early stages of
the training and later retires to obscurity. In the middle of the training the reconstruction dominates,
and eye divergence takes over towards the end. Definiteness is a training metric (the average of
maximum entries in each row of each atom) indicating training progress. We stopped the training at
the 120th epoch and inspected the atoms with results shown in Figure 2.

Let D := { (x, y) : y = Px for some permutation P } be a set of input-output examples, let A :=
{ai, . . . , ak} be fixed atoms of width w that are unknown to the model, and let P be a set of programs
composed from A that give D. So A,P are the ground-truth atoms and programs for D.

In our experience, the hyperparameters of our model can always be tuned to achieve full individual
program class synthesis – that is, to find a single set of atoms that can be used to produce any
program in P . We wish to support this claim with a theoretical result in our future work and resort
for now to evaluation in scenarios where the model hyperparameters are fixed but the ground-truth
atom sets vary.

Our broader evaluation task here is therefore to find a set of candidate atoms A′ which can be used
to form as many programs in P as possible when evaluating across a range of different input-output
pair sets D with hyperparameters fixed.

4.1 EVALUATION METRICS

We evaluate a quality of a candidate set of atoms A′ by three metrics. The first, recall rate, is the
proportion of P that can be arrived at by composing atoms of A′. This simply measures how good of
a set of atoms A′ is with respect to P . Overlap is the ratio of P to ⟨A′⟩, where the latter denotes the
algebraic closure of A′ under composition (i.e. the smallest group generated by the elements of A′).
This is an indication of how well A′ aligns with A, and in the context of full group reconstruction
also represents the “precision” of A′ as a generating set for the group being reconstructed. Finally,
we take quality to be the ratio of the cardinalities of A and A′ – a measure of how far A′ is from
minimality.

4.2 EVALUATION DATASETS

Our experiments are run on three different evaluation datasets, each tailored to assess the model
under a different set of circumstances.

• The partial synthesis dataset has been constructed by generating input-output pairs by pro-
grams of lengths 1-4 acting on tuples of size 5-9, formed by using at most 5 distinct atoms,
each being a permutation of between 2 and 5 positions in the tuple.

• The dataset for minimal atom-set finding has been built by generating example pairs by
programs consisting of cycles only. The cycles act on tuples of sizes 12-14, are between 1
and 3 in A, and have each length between 2 and 4.
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Data Form Metric Type Task Datasets

Partial Synthesis Minimal Set Group Reconstr.
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UNIQUE-w mean 0.711 0.195 0.925 0.958 0.948 1.000 0.873 0.397 0.511
weighted 0.712 0.166 0.908 0.947 0.947 1.000 0.862 0.285 0.440

ARBITRARY-w mean 0.647 0.181 0.940 0.825 0.687 0.891 0.895 0.499 0.540
weighted 0.638 0.165 0.929 0.826 0.700 0.892 0.879 0.451 0.487

INTEGERS-100 mean 0.917 0.933 0.994 0.671 0.915 1.000 0.457 0.764 0.893
weighted 0.895 0.933 0.992 0.634 0.920 1.000 0.310 0.766 0.919

Table 1: The results of the systematic evaluation of DISPER on the datasets and data forms of Sec-
tion 4. Emphasis and emphasis mark the best results per dataset for unweighted and weighted (by
cardinality of P) statistics, respectively. The best hyperparameters per dataset and data form varied.
For UNIQUE-w and ARBITRARY-w, these were in the ranges β ∈ (0.15, 0.25), γ ∈ (0.05, 0.10), δ ∈
(0.00, 0.01). For INTEGERS-100 these were scaled by a factor of 100 except for δ which was
clamped at 1. All models were allowed to use natoms = 12, with nlength, nheads ∈ [5, 10].

• Group reconstruction dataset consists of input-output example collections D generated by
acting on input tuples by the elements of all 18 groups of order ≤ 10.

The collections of input-output examples come in three forms:

• UNIQUE-w. Exactly w distinct tuples one-hot-encoding numbers 1, . . . , w are the elements
of the input tuple x. Each element appears in x exactly once.

• ARBITRARY-w. w tuples one-hot-encoding numbers 1, . . . , w are chosen uniformly at
random with replacement. Elements may thus appear in x multiple times or not appear at
all.

• INTEGERS-100. w integers between 0 and 99 inclusive are drawn uniformly at random
with replacement to form the input tuple x. Similarly to above, any integer may appear
more than once.

UNIQUE-w pairs x, y always allow complete reconstruction of the permutation matrix that has been
applied to them. This is not the case for ARBITRARY-w and INTEGERS-100, which further differ
from each other by the difficulty of training. Data in the forms of UNIQUE-w and ARBITRARY-w ad-
mits training with binary cross-entropy loss, while INTEGERS-100 calls for a loss for an unbounded
range (in our case mean squared error) and would generally take more computational resources to
reach the same level of accuracy as UNIQUE-w or ARBITRARY-w. In line with the intuition, of the
three data forms, data in UNIQUE-w would always lead to the fastest model training times.

4.3 SYSTEMATIC EVALUATION OF DISPER

The results of our evaluation of DISPER across all tasks and on all datasets are listed in Table 1. We
observe that UNIQUE-w, ARBITRARY-w, and INTEGER-100 are each the best form for a different
dataset task. In line with our intuition, uniqueness was particularly useful in minimal atom set
finding, and the fine granularity of the INTEGER-100 was advantageous in partial synthesis while
strongly disadvantageous in full group reconstruction. Overall, high recall, overlap, and quality
scores were achieved for at least one data form for both partial synthesis and minimal atom set
finding.

Full group reconstruction is a challenging task, requiring the model to keep a wide inventory of
permutations to span all the possible actions of the group under reconstruction, but also demanding
that in the end, the set of identified atoms is small and its closure does not outspan the group being
learned. The overlap and quality scores were noticeably lower for this task. We give an overview
of the scores per group attained by DISPER in Appendix B. Here and also from frequent manual
inspection, we observed no general condition on the type of groups that could help identify groups
that are difficult to fully reconstruct.
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Model Task Datasets

Partial Synthesis Minimal Set Group Reconstr.
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DNN 0.175 0.111 0.350 0.191 0.120 0.387 0.160 0.110 0.290

1D CNN 0.560 0.759 0.876 0.612 0.890 0.951 0.732 0.876 0.512

2D CNN 0.908 0.730 0.997 0.962 0.932 0.991 0.908 0.451 0.600

RNN 0.470 0.782 0.921 0.532 0.841 0.931 0.390 0.327 0.379

Transformer Encoder 0.361 0.725 0.674 0.423 0.429 0.412 0.432 0.291 0.300

DISPER 0.942 0.956 1.000 0.962 0.952 1.000 0.900 0.621 0.615

Table 2: The results of the evaluation of DISPER against the baselines. For each model and task
dataset, the results reported are from the best-performing data form. Emphasis marks the best
results in terms of the weighted score.

4.4 EVALUATION AGAINST BASELINE MODELS

To assess the impact of architectural choices made in the design of DISPER, we evaluated it against
a multi-layer fully-connected neural network, one-dimensional and two-dimensional convolutional
neural networks, a recurrent neural network, and a transformer encoder. We describe these in more
detail in Appendix C. The results of this evaluation are listed in Table 2. We see that DISPER out-
performs the baselines in most evaluation instances, with the two-dimensional convolutional neural
network coming in as a close second.

For the minimal generating set task, the recall performance of the two-dimensional convolutional
neural network matches that of DISPER, but the two-dimensional CNN has lower overlap and qual-
ity, Notice also that for the group reconstruction task where the one-dimensional convolutional neu-
ral network produces a set of higher overlap than DISPER, both the recall and quality are lower,
suggesting that the network managed to identify atoms of larger generating orbits in the group but
from among predictions of atoms that were more in quantity but less often correct.

Observe that even the best DNN exhibited very weak performance when compared to other archi-
tectures, despite using sufficiently wide layers and being six layers deep. When viewed in contrast
with the one-dimensional CNN, this suggests that the identification of the appropriate permutation
to reconstruct requires more sophistication than possessed by fully-connected layers. We find the
results of individual baseline model architectures on permutations to be aligned with the outcomes
of the benchmarking effort for finitary abstractions (Belcak et al., 2022).

5 CONCLUSION

We have introduced a purely neural model – DISPER – for permutation program analysis and syn-
thesis, and demonstrated its ability to learn useful atomic permutations and then use them to produce
programs that correctly map input-output examples. We further evaluated it against a set of baseline
models and found that it outperforms common architectures.

DISPER can be used both as a tool for identification of atomic permutations and as a synthesizer
that produces a program for a given input-output pair. This duality of purpose arises from it simul-
taneously forming a set of atoms and attempting program reconstruction throughout its training.

We see permutations as a simple but rich class of programs for induction from examples and hope
that our work will help to facilitate further advancements in neural program synthesis. To this end
and in the interest of reproducibility we make our code and data available at anonymised.
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A HYPERPARAMETER CORRELATIONS

Experimenting with hyperparameter grid search consisting of 100 DISPER model instances evalu-
ated across the hyperparameter range of Table 1, we observed correlations between hyperparameters
and recall, precision, and quality metrics. For the correlation measure we employed the Pearson cor-
relation coefficient.

Relatively high values of β, γ lead to sharp deterioration in recall and were thus filtered out as
outliers. Even then, β retained a slight correlation of −0.1 with recall, but had correlations of +0.54
and +0.23 with overlap and quality, respectively. γ was neutral with respect to recall, −0.38 with
respect to overlap and +0.24 with quality. δ was −0.51 to recall, +0.20 to overlap and +0.12 to
quality. natoms was +0.12 to recall, +0.40 to overlap, but −0.49 to quality.

AdamW optimizer consistently performed better over Adam, RMSProp, and Adadelta, with higher
learning rates leading to significantly worse recalls (−0.45) and smaller atom sets (+0.37).

Higher batch sizes had the tendency to further hinder recall (−0.27) but increase overlap and quality
(+0.38, +0.12).

B FULL GROUP RECONSTRUCTIONS

Group recall overlap quality Group recall overlap quality

1 1.00 1.00 1.00 C8 0.63 0.01 0.25
C2 1.00 1.00 1.00 C4 × C2 0.13 0.01 0.67
C3 1.00 1.00 1.00 D8 0.50 0.06 0.40
C4 1.00 1.00 1.00 Q8 1.00 0.50 0.50
C2 × C2 0.75 0.33 0.50 C2 × C2 × C2 0.25 0.02 1.00
C5 1.00 1.00 1.00 C9 0.11 0.01 0.33
S3 1.00 0.50 1.00 C3 × C3 1.00 0.50 0.50
C6 1.00 1.00 0.33 D10 0.20 0.04 1.00
C7 1.00 0.02 0.33 C10 1.00 0.33 1.00

Table 3: The results for DISPER applied to perform full reconstructions of groups of order up to 10.
UNIQUE-w was used as a data form, with β = 0.025, γ = 0.005, δ = 0.001, natoms = 5, nlength =
10.

C BASELINE MODELS

To assess the impact of architectural choices made in the design of DISPER, we evaluated it against
a multi-layer fully-connected neural network, one-dimensional and two-dimensional convolutional
neural networks, a recurrent neural network, a transformer encoder, and a modification of DISPER’s
original architecture in which the control unit is replaced by a transformer encoder appended with a
linear layer.

It turned out that the success of the modification’s training was very sensitive to hyperparameters
and, when it trained successfully, significantly underperformed all other models considered. This is
likely due to the relative scarcity of information available to the transformer through the interface of
program choices made from among the candidate atoms – we believe that the interface of program
choices, through which the control unit interacts with the output and the loss, acted as an information
bottleneck for the transformer control unit.

The following five model architectures and configurations were considered:

• DNN, or a multi-layer feed-forward neural network, consisting of six ReLU-activated fully-
connected layers narrowing down towards the output.

• 1D CNN, consisting of two one-dimensional convolutional layers followed by a max-
pooling layer and five fully-connected layers.
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• 2D CNN, consisting of two two-dimensional convolutional layers and five fully-connected
layers.

• RNN, consisting of one fully-connect layer followed by a recurrent layer, followed by a
collapsing fully-connected layer.

• Transformer Encoder, consisting of 4 layers using 8 attention heads each.

The best configurations of these models ( in terms of the numbers of layers, layer widths, kernel
sizes, etc.) were first identified in separate grid searches. The models were provided with the
same inputs as the DISPER model (varying across dataset types). All the models accepting one-
dimensional input were operating on flattened tensors (rows and columns were collapsed into one
tensor dimension). Each of the baseline architectures was appended with a linear layer, whose
outputs were interpreted in order as nlength w-by-w matrices giving the desired permutation.

The most substantial difference between the baseline models and DisPer lies in how they produce
the final permutation. While DISPER learns the atomic permutations and to choose from them in
parallel, the baseline models predict each of the operations constituting the permutation directly. In
that manner, the repeated use of an atom by DISPER manifests itself as the same atom being chosen
by the control unit multiple times for a single resulting permutation, the baseline models have to
repeatedly reconstruct it in full.
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