
Published as a conference paper at ICLR 2023

XLCOST: A BENCHMARK DATASET FOR CROSS-
LINGUAL CODE INTELLIGENCE

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni & Chandan K. Reddy
Department of Computer Science, Virginia Tech, Arlington, VA
{mingzhu, aneeshj, karthiks, roshan14, tsaisindhura}@vt.edu
reddy@cs.vt.edu

ABSTRACT

Recent advances in machine learning have significantly improved the understanding
of source code data and achieved good performance on a number of downstream
tasks. Open source repositories like GitHub enable this process with rich unlabeled
code data. However, the lack of high quality labeled data has largely hindered the
progress of several code related tasks, such as program translation, summarization,
synthesis, and code search. This paper introduces XLCoST , Cross-Lingual Code
SnippeT dataset, a new benchmark dataset for cross-lingual code intelligence. Our
dataset contains fine-grained parallel data from 8 languages (7 commonly used
programming languages and English), and supports 10 cross-lingual code tasks. To
the best of our knowledge, it is the largest parallel dataset for source code both in
terms of size and the number of languages. We also provide the performance of
several state-of-the-art baseline models for each task. We believe this new dataset
can be a valuable asset for the research community and facilitate the development
and validation of new methods for cross-lingual code intelligence. 1.

1 INTRODUCTION

Recent advances in machine learning have benefited a number of code related tasks, such as code
translation, code summarization, and code synthesis. Open-source code repository websites like
Github provide enormous amount of source code data, which enables the training of large-scale
programming language models such as CodeBERT (Feng et al., 2020), PLBART (Ahmad et al.,
2021a), TransCoder (Roziere et al., 2020) and CodeT5 (Wang et al., 2021). These extensively
pre-trained models have shown superior performance on benchmark datasets like CodeXGLUE (Lu
et al., 2021).

Although open-source code data is abundant in quantity, it has several disadvantages when being used
as training data for code-related models. First, most of the available code data is unlabeled. For tasks
like Code Translation, Code Summarization, and Code Synthesis, high quality parallel data is critical
for model training. However, it is difficult to mine parallel data from open-source projects. Second,
labeled data is usually small in size. For example, the code translation data introduced in Zhu et al.
(2022) only has around 70 programs for testing and 50 programs for validation. Due to the small size
of evaluation data, the models trained on this dataset may not be thoroughly evaluated. Moreover, the
available labeled datasets usually only cover a limited number of languages. For example, the Code
Translation dataset in CodeXGLUE only covers 2 languages, Java and C#. Because of the scarcity of
labeled data in some programming languages, code tasks in some low-resource languages remain
unexplored.

In this paper, we introduce XLCoST , a machine learning benchmark dataset that contains fine-
grained parallel data in 7 commonly used programming languages (C++, Java, Python, C#, Javascript,
PHP, C), and natural language (English). The data is parallel across 7 languages, at both code snippet
level and program level. This means that, given a program in one language, the dataset contains the
same program in up to 6 other programming languages. Each program is divided into several code
snippets, and programs in all the languages are aligned at the snippet level. Moreover, each of the

1https://github.com/reddy-lab-code-research/XLCoST

1

https://github.com/reddy-lab-code-research/XLCoST

Published as a conference paper at ICLR 2023

Table 1: Comparison against other parallel code datasets (Py - Python, JS - JavaScript). Column
”Size” refers to the number of parallel data pairs. *This number is for single programs, not pairs.
Dataset Alignment Task Labelling Size Languages
CodeNet Program Multiple Solutions to the same problem 13.9M* 55 programming languages
AVATAR Program Translation Solutions to the same problem 57,414 Java, Py
CodeXGLUE Method Multiple Matching function names 11,800 Java, C#
CoST Snippet Translation Matching code comments 132,046 C++, Java, Py, C#, JS, PHP, C
XLCoST Snippet Multiple Matching code comments 1,002,296 C++, Java, Py, C#, JS, PHP, C, English

snippets is accompanied with a comment, and the comment for a particular snippet is the same across
all the languages. Table 1 presents a comparative analysis of XLCoST in terms of the number of
available parallel data samples against other widely used parallel code datasets. The dataset contains
around 1 million parallel snippets and 123K parallel programs in total, which is significantly larger
than many available parallel code datasets. We believe that this dataset is a valuable asset for the
research community and can potentially benefit a number of code-related research problems.

To further facilitate the development and evaluation of models with a focus on source code, we also
introduce 10 different cross-lingual tasks. These tasks can be divided into two categories: Generation
and Retrieval. The generation tasks include Code Translation (Code-to-Code), Code Summarization
(Code-to-Text), and Code Synthesis (Text-to-Code); the retrieval tasks include NL (Natural Language)
Code Search and XL (Cross-Lingual) Code Search. Each task is at both snippet and program level.

To evaluate how challenging the tasks are with the proposed dataset, we run experiments on all the
10 tasks with a number of state-of-the-art baseline models. We also conduct an empirical study to
understand how the model design relates with the performance on different tasks with XLCoST
dataset. The primary contributions of this paper are as follows:

• We introduce a new dataset which is parallel across 8 languages (7 programming languages and
English) at both snippet level and program level. To the best of our knowledge, it is the largest
parallel dataset for source code in both size and number of languages.

• We formulate 10 different cross-lingual tasks to facilitate the development and evaluation of models
in this domain.

• We run experiments for all the 10 tasks on the proposed dataset with a number of state-of-the-art
baseline models and provide insights about model design for the new challenges.

2 THE XLCoST DATASET

The data for XLCoST was collected from GeeksForGeeks2, which is a website that houses thousands
of data structures and algorithm problems along with solutions in up to 7 different programming
languages - C++, Java, Python, C#, Javascript, PHP, and C. According to GeeksForGeeks, the solution
programs for the same problem follow the same structure, down to the variable names. This results
in the programs being semantically consistent across the different languages. In most cases, the
programs for the same problem share the same set of comments in the same order, which indicates
that they are parallel to the snippet level. This is where the fine-grained alignment in XLCoST
comes from.

2.1 DEFINITIONS

Problems: The problems are mostly about data structures and algorithms, as they are mainly designed
for tutoring and coding interview preparation. Each problem has programs as solutions in up to 7
programming languages.
Programs: A program is a solution to a problem in a specific programming language. Each problem
in this dataset may contain up to 7 programs (one for each language). The programs for the same
problem share similar logic and structure.
Snippets: The code between two consecutive comments in a program is termed as a snippet (code

2https://www.geeksforgeeks.org/

2

Published as a conference paper at ICLR 2023

Table 2: The train-valid-test split and basic statistics of XLCoST data. SN - Snippets; PR - Program.
Snippet-level Program-level

Split C++ Java Py C# JS PHP C Total C++ Java Py C# JS PHP C Total
train 93847 91089 81207 87583 70649 18027 3763 446165 9797 9623 9263 9345 8590 3087 463 50168
valid 4432 4460 3946 4436 3829 930 350 22383 492 494 472 491 475 158 60 2642
test 8118 8154 7293 8013 7033 1682 250 40543 909 911 887 899 886 308 51 4851

total 106397 103703 92446 100032 81511 20639 4363 509091 11198 11028 10622 10735 9951 3553 574 57661

Stats C++ Java Py C# JS PHP C Avg. C++ Java Py C# JS PHP C Avg.
lines/code 3.41 3.71 2.41 3.82 3.23 4 4.05 3.37 32.45 34.93 20.54 35.64 26.47 23.23 31.5 29.71
tokens/code 21.52 24.1 21.63 23.06 22.52 28.14 25.37 22.83 205 227.1 188.5 215.3 184.6 163.5 198 202
tokens/text 8.25 8.14 7.97 8.23 7.96 8.45 9.67 8.15 10.68 10.67 10.75 10.7 10.87 9.91 8.19 10.66
SN/PR – – – – – – – – 9.52 9.42 8.51 9.33 8.2 5.81 7.77 8.81

before the first comment and after the last comment are also included). On an average, each program
contains 8.81 snippets.
Description: Each problem also has a short description, for example, “Maximum Consecutive
Increasing Path Length in Binary Tree.”
Comments: The comments in each program in this dataset. The programs are well commented and
each program has an average of around 9 comments.

2.2 DATA CHARACTERISTICS

The final dataset consists of 11,265 programming problems. As shown in Table 2, there are 57,661
unique programs. Each program consists of 8.81 snippets on average, which results in 509,091
snippets. A detailed statistics table for the translation task is available in Appendix A.2.

Multilingual: The dataset contains parallel data in 8 languages (7 commonly used programming
languages and English).
Parallel: The dataset contains 4 types of parallel data, snippet-to-snippet, program-to-program,
snippet-to-comment, program-to-problem (and comments) which further enables 10 different tasks.
Finely-aligned: The data is parallel at both snippet level and program level. To the best of our
knowledge, this dataset is the finest-aligned among parallel code datasets.
Large: It is the largest parallel dataset for source code in terms of both size and number of languages.
Simple: Each program in this dataset is standalone without dependency on other programs. It ensures
that the complexity of the tasks is controllable.

2.3 DATA COLLECTION AND PROCESSING

The data was scraped from different sub-pages of the GeeksForGeeks website. A majority of the
problems on this site fall under two categories - Data Structures and Algorithms. More details
are included in Appendix A.3. The IP policies and regulations for GeeksForGeeks were carefully
followed and we confirm that no data privacy policy was violated when collecting the data.

After collecting the data, we first removed duplicate problems, as some problems might be presented
in multiple subcategories. Then we extracted problem description and solution programs in each
available language from the page. Each program was sliced into code snippets by splitting at the
comments, after which the comments and docstrings were removed from the programs. Any personal
information such as the name of the code’s contributor, was also removed from both the comments
and the codes at this time. Eventually, we get 4 types of information from one page: 1) Problem
Description; 2) Parallel programs in different languages; 3) Code Snippets; 4) Code Comments.

2.3.1 DATA ALIGNMENT

The snippet-level alignment was done by matching comments in the solution programs (for the
same problem) across different languages. As mentioned earlier, GeeksForGeeks programs follow
a standard template, because of which the comments in different language programs (for the same
problem) align parallelly in most cases. This yields parallel snippets that have the same functionality
across different languages.

3

Published as a conference paper at ICLR 2023

Table 3: An overview of the tasks. All the tasks have pairwise data at both snippet-level and program-
level in 7 programming languages, C++, Java, Python, C#, Javascript, PHP, and C. The tasks can be
divided into two categories, generation and retrieval. The generation tasks include Code Translation,
Code Summarization and Code Syntheis; the retrieval tasks include NL (natural language) Code
Search and XL (Cross-Lingual) Code Search.
Category Task Data Description

Generation

Code Translation
(Code-to-Code)

Snippet Translation 872K/47K/83K Translate code snippet across programming languages

Program Translation 106K/6K/11K Translate program across programming languages

Code Summarization
(Code-to-Text)

Snippet Summarization 446K/22K/41K Generate comment for given code snippet

Program Summarization 50K/3K/5K Generate problem description for given program

Code Synthesis
(Text-to-Code)

Snippet Synthesis 446K/22K/41K Generate code snippet giving comment

Program Synthesis 50K/3K/5K Generate program giving problem description and comments

Retrieval

NL Code Search
Comment-to-Snippet Search 446K/22K/41K Retrieve code snippet for given comment

Problem-to-Program Search 50K/3K/5K Retrieve program for given problem description

XL Code Search
Snippet-to-Snippet Search 872K/47K/83K Retrieve code snippets in other languages for given snippet

Program-to-Program Search 106K/6K/11K Retrieve programs in other languages for given snippet

Misalignment detection: In some cases, the comments in different solution programs are not aligned.
The misalignment can come from different numbers of comments, and the differences in the comment
content. This is usually due to some solution program not strictly following the guidelines and
templates. For solution programs with the same number of comments, we evaluate the alignment by
calculating the average similarity score of each pair of comments in the two programs (using Python
difflib.SequenceMatcher3)). If the average score is below a certain threshold (80% in our case), it
would be categorized as misalignment and manual checking would be needed. Solution programs
with different number of comments were automatically categorized as misaligned and sent for manual
checking.

Manual checking and aligning: Manual checking was performed by two of the authors with good
knowledge of programming languages and their functionalities. Based on the differences in number
of comments, the misaligned programs were split into the following categories:
Category 0: The programs have the same number of comments. The type of misalignment usually
only is due to different wording in the comments and can be easily fixed.
Category k: The difference in number of comments is k. When k < 3, extra comments needed to
be discarded in some cases and code from these comments was moved to appropriate snippets to
preserve the alignment with other languages. In some cases, there were also missing comments which
had to be added along with the moving of the appropriate code block as in the previous case. When
k >= 3, the programs will be discarded.

2.3.2 DATA SPLITTING

Since the parallel programs are within each problem, splitting the data at problem level can naturally
avoid data leakage. However, during the data processing, we noticed that some problems are very
similar. For example, ”Check if a large number is divisible by 3 or not” and ”Check whether a large
number is divisible by 53 or not”. If one problem goes to the training set and the other goes to the
test set, it can lead to potential data leakage and bias. To address this concern, we first clustered all
the similar problems into groups, and make the split at the group-level. In this way, we can ensure
that similar problems go to the same split. To do so, we first calculate the similarity score (using
Python difflib.SequenceMatcher) between every two pairs of problem descriptions, and group all the
problems using various similarity score thresholds (60%-80%) based on length of the descriptions.
The final split ratio in the data is around 85-5-10 for train-validation-test sets. The detailed steps for
data splitting are included in Appendix A.4.

3https://docs.python.org/3/library/difflib.html

4

Published as a conference paper at ICLR 2023

Figure 1: An illustration of the data and the tasks. The first column is the Problem Description; each
cell in the second column is a Comment; each cell from the third column is a code Snippet. The
combination of all the code snippets in a column is a Program (truncated due to space limitation). The
arrows show the input and output data for each task. Solid lines are for generation tasks and dashed
lines are for retrieval tasks. Note that the Program Synthesis task uses both Problem Description and
Comments as input.

3 CODE TASKS

The tasks can be divided into two categories: generation and retrieval. The generation tasks include
Code Translation, Code Summarization, and Code Synthesis. The retrieval tasks include NL (natural
language) Code Search and XL (Cross-Lingual) Code Search. All the tasks are at both snippet-level
and program-level. Figure 1 shows the input and output data for each of the tasks. Table 3 summarizes
all the tasks introduced and some aggregate data statistics corresponding to each task.

Code Translation (Code-to-Code): Code Translation is the problem of converting source code
from one programming language to another. Efficient and accurate code translation is valuable in
scenarios like legacy code migration, software platform adaptation, etc. The proposed XLCoST
dataset provides parallel data in 7 common programming languages, supporting translation for 42
language pairs at both snippet and program level.

Code Summarization (Code-to-Text): The objective of Code Summarization task is to generate
natural language descriptions of the code that is given as input. We perform this task under two set-
tings, generating snippet level summary by leveraging the comment-snippet pairings, and generating
problem level summary using the problem description and program code pairings. Applications of
this task include increasing the comprehensibility of uncommented or unfamiliar code to first time
viewers and making it easier to collaborate as well as educate.

Code Synthesis (Text-to-Code): The Code Synthesis task focuses on generating source code from
text inputs. It includes Snippet Synthesis and Program Synthesis. We use the comment of each
code snippet as input to generate the code snippet for the Snippet Synthesis task, since they are
of similar length (as shown in Table 2). However, programs are usually much longer (Avg. 202
tokens) than problem descriptions (Avg. 11 tokens). To generate programs, it is necessary that the
input text is detailed and informative. Therefore, we use a combination of problem description and
step-by-step comments as input to generate the entire program. Since the programs in XLCoST are
well commented (9 comments/snippets per program on an average) this ensures that the models have
enough information to synthesize the whole program.

Code Search: The NL (Natural Language) Code Search in this paper refers to using text input to
retrieve relevant code. The snippet and program level task use Comment and Problem Description
as query, respectively. XL (Cross-lingual) Code Search is the task of retrieving code that performs
similar functions in multiple other languages given a piece of code in one particular language. Unlike

5

Published as a conference paper at ICLR 2023

NL code search, using code as queries to search for similarly functioning code in a multilingual
setting is relatively unexplored task. This task also includes both snippet and program level. To
account for multiple correct answers, we use a modified MRR (Mean Reciprocal Rank) for evaluation
(details in Appendix A.6).

4 EXPERIMENTS

All the baselines were initialized with the pretrained weights and default configuration (including
hyper-parameters) released by the corresponding original authors of the works. We changed the
source and target sequence lengths to align with the dataset based on the task. The models were
trained using 4 RTX 8000 GPUs with 48GB memory on each GPU. The code for training and
evaluation is released in the GitHub repository of the dataset.

4.1 EVALUATION METRICS AND BASELINES

We use the following metrics to evaluate different tasks proposed in this work: (i) BLEU (Papineni
et al., 2002) score to evaluate code-to-text generation tasks;, (ii) BLEU and CodeBLEU4 (Ren et al.,
2020) to evaluate code-to-code and text-to code generation tasks, and (iii) Mean Reciprocal Rank
(MRR) to evaluate retrieval tasks.
We use the following models/methods for our comparison:
Naive Copy Lu et al. (2021) directly copies the input source code as the output, which shows how
similar two programming languages are. It is only used for translation tasks.
RoBERTa (Liu et al., 2019) is a robustly optimized version of BERT pretrained on huge natural
language corpora. We use it only for retrieval tasks.
CodeBERT (Feng et al., 2020) uses the BERT (Devlin et al., 2019) architecture pretrained on
CodeSearchNet (Husain et al., 2019) data. We use the encoder-only version for retrieval tasks and
encoder-decoder version (the decoder is randomly initialized) for generation tasks.
PLBART (Ahmad et al., 2021a) is initialized with mBART (Liu et al., 2020) and further pretrained
on a large-collection of Java and Python functions and natural language descriptions from Github and
StackOverflow with denoising auto-encoding objective.
CodeT5 (Wang et al., 2021) employs T5 (Raffel et al., 2020) architecture and is pretrained on corpora
of 8 programming languages (Java, Python, C#, JS, PHP, C, Ruby, Go) with identifier-aware objective.

4.2 RESULT ANALYSIS

Table 4 shows the performance of baseline models for Code Translation, Code Synthesis, Code
Summarization, and Code Search tasks.

Effect of Sequence-to-Sequence Pretraining: In Table 4, on an average, CodeBERT performs
significantly worse than PLBART and CodeT5 on almost all the generation tasks (refer to the first
three sections of the table). Different from PLBART and CodeT5, which are both encoder-decoder
models pretrained with sequence-to-sequence objectives, only the encoder in CodeBERT is pretrained,
and the decoder weights are randomly initialized for sequence-to-sequence tasks. Experimental results
show that encoder-decoder architecture and sequence-to-sequence pretraining are better aligned with
generation tasks and thus can potentially achieve superior performance.

Effect of Pretraining on Specific Languages: CodeBERT is pretrained on CodeSearchNet, which
contains data from 6 programming languages, Java, Python, Javascript, PHP, Ruby, and Go. PLBART
is pretrained on Java and Python from GitHub data. CodeT5 is trained on the 6 languages from
CodeSearchNet and additional C and C#. In Table 4, CodeT5 consistently outperforms the other
two models for almost all generation tasks. When the source or target language is C, CodeT5
outperforms the other two by a wide margin. Pre-training on specific languages can potentially benefit
the generation tasks with these languages as either input or output.

Performance on Low-Resource Languages: In Table 4, most models performs significantly worse
on C compared to other languages, both when C is source or target language, in almost all the tasks
(except for Code Search). As shown in Table 2, C has the least number of samples for all the tasks. It
shows that tasks in low-resource languages are potentially more challenging.

4We extended the CodeBLEU metric to support C and C++. Related code is released in the GitHub repo.

6

Published as a conference paper at ICLR 2023

Table 4: From top to bottom, the table contains results for Code Translation, Code Synthesis, Code
Summarization, and Code Search at the snippet-level and program-level. CodeBLEU scores are
reported for Code Generation tasks (Translation and Synthesis). For Translation, the language column
on the left represents the source language and the row on the top represents the target language.
BLEU scores are reported for Summarization and MRR for Search.

Snippet-level Program-level

CodeBLEU Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

C++

Naive Copy – 64.56 34.79 63.19 53.16 42.56 84.2 – 57.36 17.68 58.02 53.16 18.97 75.91

CodeBERT – 84.94 74.55 84.99 82.79 68.56 45.46 – 74.73 24.96 76.35 72.95 50.4 21.84

PLBART – 83.85 74.89 84.57 83.19 68.62 83.95 – 75.26 70.13 78.01 61.85 67.01 72.59

CodeT5 – 86.35 76.28 85.85 84.31 69.87 90.45 – 80.03 71.56 81.73 79.48 70.44 85.67

Java

Naive Copy 70.85 – 35 78.43 57.81 42.49 69.74 64.25 – 39.87 72.68 57.81 42.51 62.48

CodeBERT 87.27 – 58.39 92.26 84.63 67.26 39.94 79.36 – 8.51 84.43 76.02 51.42 21.22

PLBART 87.31 – 58.3 90.78 85.42 67.44 72.47 81.41 – 66.29 83.34 80.14 67.12 63.37

CodeT5 88.26 – 74.59 92.56 86.22 69.02 82.78 84.26 – 69.57 87.79 80.67 69.44 78.78

Python

Naive Copy 39.22 31.89 – 31.79 38.34 36.02 37.79 37.47 29.78 – 27.59 38.42 35.48 35.66

CodeBERT 80.46 58.5 – 54.72 57.38 65.14 10.7 68.87 28.22 – 17.8 23.65 49.3 18.32

PLBART 80.15 74.15 – 73.5 73.2 66.12 62.15 74.38 67.8 – 66.03 69.3 64.85 29.05

CodeT5 81.56 78.61 – 78.89 77.76 67.54 68.67 78.85 73.15 – 73.35 71.8 67.5 56.35

C#

Naive Copy 69.78 78.71 34.77 – 57.85 42.53 66.73 64 73.63 40.09 – 57.79 42.96 60.87

CodeBERT 86.96 90.15 56.92 – 84.38 67.18 40.43 78.52 82.25 10.82 – 75.46 51.76 21.63

PLBART 84.98 6.27 69.82 – 85.02 67.3 75.74 80.17 81.37 67.02 – 79.81 67.12 57.6

CodeT5 88.06 91.69 73.85 – 85.95 68.97 81.09 83.59 85.7 69.52 – 80.5 69.63 77.35

JS

Naive Copy 60.82 59.25 38.84 64.27 – 41.56 55.84 53.81 51.77 42.31 54.86 – 42.11 49.04

CodeBERT 84.38 84.42 52.57 84.74 – 66.66 33.29 75.43 72.33 9.19 75.47 – 52.08 19.79

PLBART 84.45 84.9 69.29 85.05 – 67.09 72.65 80.19 76.96 64.18 78.51 – 67.24 67.7

CodeT5 85.06 85.48 73.15 85.96 – 68.42 80.49 82.14 79.91 68.42 81.77 – 68.76 74.57

PHP

Naive Copy 36.33 35.61 24.62 36.67 35.55 – 35.95 34.62 31.33 25.68 32.81 32.26 – 33.45

CodeBERT 82.58 81.57 69.29 80.96 79.94 – 28.45 50.13 46.81 16.92 49.75 48.12 – 22.19

PLBART 83.87 81.66 71.17 78 82.94 – 57.39 79.4 72.77 61.26 74.16 44.26 – 56.23

CodeT5 86.33 85.12 73.22 84.56 83.56 – 79.3 85.55 82.09 72.26 83.79 81.72 – 65.86

C

Naive Copy 83.93 65.46 38.49 63.05 55.55 41.85 – 78.4 59.41 20.2 59.83 53.54 19.75 –

CodeBERT 45.84 39.69 13.55 39.71 29.85 38.88 – 21.7 21.27 21.1 19.5 15.64 31.71 –

PLBART 82.53 72.35 49.16 75.78 75.05 60.86 – 78.42 13.45 5.53 45.15 31.47 25.17 –

CodeT5 90.26 81.81 63.81 83.05 79.73 66.32 – 88.17 76.12 56.32 80.2 76.5 64.28 –

CodeBLEU Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

Code
Synthesis

CodeBERT 22.7 25.53 12.26 23.44 23.87 36.47 10.63 26.51 31.14 24.5 33.37 29.09 39.84 18.08

PLBART 34.89 32.23 4.62 29.36 29.63 37.56 22.88 44.09 41.55 33.77 40.7 38.33 43.01 6.72

CodeT5 35.48 33.51 21.1 30.64 29.99 36.37 21.93 45.18 42.73 35.02 43.6 38.66 45.02 34.88

BLEU Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

Code
Summarization

CodeBERT 14.4 13.13 3.96 14.07 11.81 11.25 5.84 7.68 5.47 2.04 7.58 7.67 7.5 6.64

PLBART 14.77 13.76 8 14.37 10.93 9.07 7.5 7.65 6.35 4.86 9.23 6.78 6.03 4.14

CodeT5 17.36 16.69 10.76 17.44 14.34 13.42 6.63 9.62 8.82 6.32 7.75 8.23 10.5 12.84

MRR Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

NL Code
Search

RoBERTa 25.77 25.85 27.08 25.64 26.78 33.47 36.14 51.47 50.4 48.98 52.24 50.05 62.01 56.34
CodeBERT 29.77 29.41 30.94 29.08 31.2 38.75 41.56 59.13 56.07 57.97 56.65 54.37 65.13 47.13

XL Code
Search

RoBERTa 41.73 41.25 36.16 41.18 43.17 41.17 37.1 48.28 47.66 46.11 46.4 47.6 43.76 40.15

CodeBERT 42.11 41.71 36.98 41.52 43.41 41.09 37.87 48.71 48.33 47.24 47.96 47.66 44.02 40.43

Effect of Transfer Learning from Snippet-level Training: From Table 4, first section, we noticed
that models perform significantly better at snippet-level than program-level on most language pairs
in the translation task. This is because 1) Snippets are much shorter than programs. As shown in
Table 2, the average length of snippets is 1/7 of the programs. 2) Snippet data is much more than
program data. As shown in Table 3, the amount of pairwise snippet data is 8 times of program data.
Motivated by this, we employ transfer learning from snippet-level training to improve the Program

7

Published as a conference paper at ICLR 2023

Table 5: Transfer learning from Snippet-Level training for Program Translation task on low resource
language C. ST - Snippet Transfer.

Model C-C++ C-Java C-Py C-C# C-JS C-PHP C++-C Java-C Py-C C#-C JS-C PHP-C
CodeBERT 21.67 21.27 21.1 19.48 15.68 31.71 21.87 21.27 18.32 21.57 19.79 22.19
CodeBERT+ST 38.85 37.55 19.79 33.52 27.1 37.61 31.99 30.52 24.07 34.16 29.67 28.35
PLBART 78.42 13.43 5.53 45.14 31.42 25.17 72.61 63.4 29.01 57.6 67.71 56.15
PLBART+ST 81.1 70.78 44.26 72.68 73.27 60.71 79.72 77.3 47.48 74.09 72.6 64.64
CodeT5 88.17 76.15 56.3 80.2 76.42 64.28 85.67 78.76 56.44 77.38 74.56 65.8
CodeT5+ST 89.06 79.04 62.61 80.53 78.59 68.31 88.96 82.08 60.97 80.93 79.58 77.58

Table 6: Top compilation errors in each target language (Javascript not included).
Language Top-3 Compilation Errors in Each Target Language
C++ expected ‘}’ at end of input stray ‘#’ in program ‘define’ does not name a type

Java ’;’ expected not a statement unclosed character literal

Python SyntaxError: invalid syntax SyntaxError: unexpected EOF while parsing IndentationError: expected an indented block

C# Too many characters in character literal Unexpected symbol ‘end-of-file’ Newline in constant

PHP Syntax error, unexpected ’}’,expecting EOF.. Syntax error, unexpected ’)’.. Syntax error, unexpected EOF on line 1

C expected declaration or statement at end of input expected ‘=’,‘,’,‘;’,‘asm’ ... before ‘)’ token expected statement before ‘)’ token

Translation performance on low-resource language C. Table 5 shows the performance of each model
with and without the transfer learning. For example, CodeBERT is trained only on program data;
”CodeBERT + ST” (ST is short for Snippet Transfer) model is first trained on the snippet data, and
then on program data. All the models’ performances improve by a wide margin on all the language
pairs after snippet-level transfer learning, both when C is the source or target language.

Top Compilation Errors in Generated Programs: Table 6 shows the top compilation error types
from compiling the generated programs from the Program Translation task. We aggregated the results
of generated programs from all the baselines by the target language, because 1) the top error types
of each baseline are very similar and 2) the space is limited. From this table, we can see that the
top error types are mostly syntactic errors, such as bracket mismatch (C++, PHP, C), indentation
mismatch (Python), missing ’;’ (Java). This indicates that the models need improvement in capturing
the structure of the programs.

4.3 LIMITATIONS AND FUTURE WORK

From our analysis of the results, we can conclude that Sequence-to-Sequence pretraining tasks,
multilingual pretraining data, and Snippet-level Transfer Learning can potentially improve the
performance on multiple tasks and low resource languages. This is an important insight for the
design and development of future models in this domain. A good code generation model should
also be able to learn and preserve the structure of the code since the current models mostly make
syntactic errors in generation. For the evaluation of code generation tasks, we use CodeBLEU as
metric, which evaluates the code syntax and semantics along with n-gram matching (as in BLEU).
However, the evaluation can be further improved by using test cases. Automated test case generation
can be explored in future work. The tasks we introduce aim to rigorously evaluate code models with
the parallel data from the dataset. Therefore, not all the tasks have practical applications in real-world,
especially the snippet-level tasks. One future direction is to make use of the comments and snippets
to iteratively generate programs.

5 CONCLUSION

In this paper, we introduce a new dataset which is parallel across 8 languages (7 programming
languages and 1 natural language) at both snippet level and program level. To the best of our
knoweldge, it is the largest parallel dataset for source code in terms of both size and number of
languages. We also introduce 10 different cross-lingual tasks to facilitate the development and
evaluation of models in this domain. Moreover, we run experiments for all the 10 tasks on the
proposed dataset with a number of state-of-the-art baseline models and provided insights about model
design for the new challenges. We believe that this dataset will be of significant value to the research
community and can potentially benefit a number of code-related research problems.

8

Published as a conference paper at ICLR 2023

REFERENCES

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training for pro-
gram understanding and generation. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
2655–2668, 2021a.

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. Avatar: A
parallel corpus for java-python program translation. arXiv preprint arXiv:2108.11590, 2021b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), 2019.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for pro-
gramming and natural languages. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 1536–1547, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.findings-emnlp.139. URL https://aclanthology.org/2020.
findings-emnlp.139.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436,
2019.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. 2019.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike
Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation.
Transactions of the Association for Computational Linguistics, 8:726–742, 2020.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Project codenet: A large-scale ai
for code dataset for learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

9

https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139

Published as a conference paper at ICLR 2023

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297, 2020.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. In NeurIPS, 2020.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pp. 8696–8708, 2021.

Ming Zhu, Karthik Suresh, and Chandan K Reddy. Multilingual code snippets training for program
translation. In 36th AAAI Conference on Artificial Intelligence (AAAI), 2022.

Daniel Z”̈ugner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan G”̈unnemann.
Language-agnostic representation learning of source code from structure and context. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

10

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 RELATED WORK

Parallel Code Data CodeXGLUE (Lu et al., 2021) is a popular benchmark that includes 14 datasets
for 10 code related tasks. The tasks include clone detection, code translation, natural language code
search, etc. However, this benchmark does not contain datasets with parallel codes from more than
2 languages. CoST Zhu et al. (2022) is a code translation dataset for 7 programming languages.
However, it is relatively small and only supports translation task. AVATAR (Ahmad et al., 2021b)
presents another parallel dataset for Java-Python translation. The authors collect multiple solutions for
problems scraped from competitive programming websites and then form n2 possible combinations
of parallel data. This is also constrained to only 2 languages. Project CodeNet (Puri et al., 2021)
has an abundance of parallel programs in a wide range of languages. However, the programs are
significantly different in logic and structure, thus the alignment is of low quality.

Cross-Lingual Code Tasks Several tasks in the code domain are related to our work, including Code
Translation, Code Summarization, Code Synthesis, and Code Search. CodeBERT (Feng et al., 2020)
pre-trained a BERT (Kenton & Toutanova, 2019) based encoder on the source code, and then added a
decoder to perform end-to-end training on code translation. CodeBERT is also used for Code Search
tasks. PLBART (Ahmad et al., 2021a) utilized an existing natural language translation model, BART
(Lewis et al., 2020), and also pre-trained it with source code. CodeTransformer (Z”̈ugner et al., 2021)
uses language agnostic features computed from the source code and its abstract syntax tree for code
summarization. OpenAI’s Codex (Chen et al., 2021) framework makes use of GPT (Radford et al.)
language models fine-tuned on publicly available code from GitHub for code related downstream
tasks. However, most of the models only explored a limited number of languages, due to the scarcity
of multilingual parallel data.

A.2 BLEU SCORES FOR CODE GENERATION

Due to space constraints in the main document, we are including the BLEU results for Code
Translation and Synthesis tasks in Table 7 in the appendix.

BLEU score has been the defacto evaluation metric used to evaluate natural language translation tasks.
It measures the similarity between the generated translation and a set of reference texts. However,
different from natural languages, programming languages have more rigorous syntax and semantics.
A minor change in the code sequence, such as addition or removal of a bracket, may not affect
the BLEU score by much, but it can potentially alter the structure and functionality of the code
substantially. Therefore, in the main paper, we use CodeBLEU as the evaluation metric for code
generation task, as it takes into consideration the Abstract Syntax Tree (AST) matching and Data
Flow Graph (DFG) matching, which measure the syntax and semantics of the code, respectively.

Due to the fact that BLEU only measures the n-gram matching and ignores code syntax and semantics,
it can be observed from our translation results (see Table 7) that BLEU scores clearly over estimate
the model performance. Almost all BLEU score values can be found to be greater than CodeBLEU
scores presented in the main paper. The effect is more pronounced for the program level tasks than
for the snippet level tasks. This shows that maintaining long term structure in full programs, which
are much longer than snippets, is harder.

However, from our Code Synthesis results (see Table 7), we observe that the BLEU scores are lower
than CodeBLEU scores. This is because the Code Synthesis results are much lower (in absolute value)
than translation results to begin with, and taking into account AST and DFG matching increases the
overall scores.

A.3 DATASET STATISTICS

A detailed breakdown of the data statistics for the translation task is provided in this section due to
space limitation in the main paper. Table 8 summarizes the number of aligned code pairs contained in
the train, validation, and test sets for all possible language pair combinations both at the snippet and
program level.

11

Published as a conference paper at ICLR 2023

A.4 MORE DETAILS ABOUT DATA COLLECTION

The data was scraped from different sub-pages of the GeeksForGeeks website. A majority of the
problems on this site belong to the following two categories: Data Structures and Algorithms. These
two categories have different sub-categories within them. For example, the Data Structures page has
the hyperlinked sub-categories of Array, Linked Lists, Stack, Queue, etc. which when clicked direct
the user to all the problems relating to that specific sub-category and their corresponding solutions in
different programming languages. The same goes for the Algorithms page.

Figure 2: A breakdown of the problem sets included in the data and their organization on the
GeeksForGeeks portal. Only three sub-categories per category is shown here for purposes of brevity.

For scraping the data, we used python scripts and some external libraries, the most important of
them being BeautifulSoup45 and Selenium6. BeautifulSoup4 is a python library that facilitates the
acquisition of data from HTML and XML files. Selenium is a python package that, in our case, is
used to automate web browser functions to navigate through the GeeksForGeeks page directories.
Each page in GFG that houses a problem and its solution has a uniform HTML page structure. This
structure allows us to extract specifically targeted sections which are needed for our dataset using
BeautifulSoup4.

Using the directory structure of the GeekForGeeks website, the ability of Selenium to navigate
through these pages and the utility of BeautifulSoup4 for content extraction from these pages, we
could extract the data from the website with practically no manual intervention. Every problem page
can have one or more solutions to the same problem in different languages. For example, if there
is a problem statement “Given a number n, print n-th Fibonacci Number”, there can be different
logics to solve the same problem. One solution may use recursion-based logic, another can utilize
dynamic programming and yet another can use a space complexity optimized method to solve the
same problem. Each logic has code in different languages and code pertaining to each logic resides
in separate sections of the page which can be identified via their HTML tags. We extracted every
possible problem statement and solution from the above-mentioned two categories and did not put
any filter on what category, type, difficulty, etc. the solutions belong to at collection time.

A.5 CREATING DATA SPLITS

A natural way to generate train-validation-test sets from the data is to split at the problem level.
However, the number of programs in different languages are imbalanced. Only 5.1% of the problems
have C programs, and it is 31.5% for PHP programs. Random splitting at the problem level can
exacerbate this problem, resulting in very small test/validation dataset for C and PHP. Moreover,
only a small number of problems have programs in all the 7 languages. It is beneficial to use these
problems for evaluation, as they can provide a fair comparison across all the languages. Satisfying
these two constraints, we take the following steps to create the data split:

5https://www.crummy.com/software/BeautifulSoup/
6https://www.selenium.dev/

12

Published as a conference paper at ICLR 2023

1. Out of all the problems that have programs (solutions) in all 7 languages, we randomly sample
the test and validation sets for C. We start out with creating the splits for C in particular since it
represents the smallest proportion of the dataset.

2. Next, we first remove all the problems that have C programs. Out of all the problems that have
programs in the remaining 6 languages (excluding C), we randomly sample the partial test and
validation sets for PHP, so that the combined problems from this step and the previous one can be
used as final test and validation sets of the PHP programs.

3. Finally, we remove all the problems that have C programs or PHP programs. Since the remaining
5 languages have approximately same number of programs, we randomly sample the partial test
and validation sets and use them for all the 5 languages. The final test and validation set for each
of the 5 languages is the combination of these problems and problems from the previous two
steps. This allows us to maintain a split ratio of approximately 85-5-10 (train-val-test) for all the 7
languages.

Our splitting strategy provides a balanced split across languages and ensures there is no overlap
between any evaluation set(test or validation) and any training set across all languages.

A.6 MORE DETAILS ABOUT XL CODE SEARCH

For this task, we create 7 different datasets, one for each language where the chosen language is the
query language and all other languages form the candidate solutions. For example, let us consider
the dataset for C++ which contains entries like ”1057-C++-1/1057-C#-1”. This basically represents
the datapoint where the first snippet of problem ID 1057 in C++ is the query and the corresponding
answer snippet is in C#. However, this is not the only correct pairing, the dataset contains all the
possible correct pairings which include {1057-C#-1, 1057-C-1, 1057-Python-1, 1057-Javascript-1,
1057-PHP-1, 1057-Java-1}. When any of these solutions are present, the output candidate list is
considered as a correctly chosen candidate. It should also be noted that all queries do not have
exhaustively all other languages as candidate solutions.

A.7 MORE DETAILS ABOUT EVALUATION METRICS

• BLEU: Given an input code sample, we use BLEU (Papineni et al., 2002) score to evaluate the
n-gram overlap between the generated and the ground-truth target text and code.

• CodeBLEU: CodeBLEU (Ren et al., 2020) is designed for automatic evaluation of code synthesis.
Besides n-gram match (as in BLEU), it also evaluates the code syntax via abstract syntax trees
(AST) and code semantics via data-flow. We use CodeBLEU for code generation tasks like Code
Translation and Code Synthesis. The original CodeBLEU does not support C and C++. We extend
the CodeBLEU code to include these two languages. The related code is included in the GitHub
repo.

• Mean Reciprocal Rank (MRR): The reciprocal rank is defined as the inverse of the rank of the
first correct candidate for a given query. MRR is the mean of the reciprocal rank for all the queries
in the test set. In order to evaluate our XL Code Search task, we modified the traditional definition
of the MRR metric to account for the possibility of multiple correct candidate solutions. We modify
it in the following manner:
Given a query qi from the set of queries Q = {q1, q2 . . . qm}, candidate set Ci = {ci1, ci2, . . . , cin}
corresponding to qi and the answer set Ai = {ai1, ai2, . . . , aik} where k ∈ [1, 6], rij is the
reciprocal rank of the jth candidate cij for cij ∈ Ai.

MRRqi =
1

k

n∑
j=1

cij∈Ai

rij

MRRQ =
1

m

m∑
i=1

MRRqi

13

Published as a conference paper at ICLR 2023

B DATASET INFORMATION

The dataset and the code used in this paper will be made publicly available upon acceptance.

B.1 MOTIVATION

As described in the main paper, the primary motivation behind the creation and release of this data is
to potentially facilitate and foster research in the domain of Deep Learning for Software Engineering.
Code related tasks have garnered a lot of attention by the community in the past few years but it
has been our observation that the availability of high quality, parallel data across multiple languages
which is required to be able to produce advances in this domain, is still limited. We discuss in the
main paper as well, how most of the widely used datasets are either limited to just a few language
pairs or are limited in size. With the release of this dataset we aim to fill both of those gaps, and to
give the research community better tools in order to solve code-related tasks.

B.2 INTENDED USE

The primary intended uses of the dataset are to encourage development and validation of model-
s/methods for code related tasks such as translation, summarization, synthesis, and search. The link
to the dataset can be found in the README of the GitHub repository. Code required to reproduce
results and baseline scores can also be found in the GitHub README file. Readers will need to cite
the original dataset when using it in their experiments or making modifications to it.

B.3 AUTHOR STATEMENT

The IP policies and regulations for GeeksForGeeks were carefully followed and we confirm that
no data privacy policy was violated when collecting the data. We bear all responsibility in case of
violation of rights. We confirm that the dataset is distributed under CC BY-SA License 4.0.

B.4 MAINTENANCE

The dataset will be actively maintained by the authors. Issues can be reported via raising an issue on
GitHub or e-mail to one of the authors. The dataset will be hosted on Google Drive since its large
size is not supported by GitHub. Any changes to hosting will be reflected in the links on the GitHub
repository. The authors may also update the dataset by adding more datapoints, or in case issues are
reported by other parties or are found by the authors themselves. Any such updates to the data will be
documented on GitHub.

B.5 SOCIETAL IMPACT

Since deep learning models have become larger, the amount of computational power needed to train
and maintain them has also increased. An unintended consequence of this has been the increased
carbon footprint of deep learning research as a result of running large number of experiments to
validate hypotheses. As our dataset aims to facilitate further research in the domain, it would also
end up having this societal impact, albeit indirectly so. We would encourage users to use compute
and memory efficient methods when carrying their research using this dataset.

14

Published as a conference paper at ICLR 2023

Table 7: BLEU scores for two tasks (Translation and Code Synthesis) separated by a double horizontal
rule. Above the double rule are presented BLEU scores of the Translation task for the 42 programming
language pairs in the XLCoST dataset. Below the double rule are the BLEU scores for the Code
Synthesis task. Column headers represent target languages. For translation, row headers represent
source languages.

Snippet-level Program-level
BLEU Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

C++

Naive Copy – 64.57 37.29 65.89 59.73 37.44 84.44 – 64.47 34.48 65.98 58.09 38.13 84
CodeBERT – 85.03 79.72 85.64 84.61 87.18 44.48 – 80.09 15.43 81.24 78.14 50.68 11.7
PLBART – 84.02 80.12 84.86 85.34 87.31 85.26 – 81.23 77.5 83.96 69.6 83.94 77.94
CodeT5 – 86.45 81.73 86.55 86.24 89.84 91.82 – 84.29 78.69 85.69 83.75 90.88 93.64

Java

Naive Copy 64.48 – 34.04 76.95 60.42 35.02 65.67 64.88 – 31.28 78.09 58.23 34.35 65.48
CodeBERT 88.18 – 61.45 92.64 86.42 84.57 38.47 83.24 – 2.51 88.31 81.16 52.7 12.27
PLBART 87.69 – 55.05 91.63 87.17 84.92 71.43 85.83 – 73.16 89 84.62 84.18 66.1
CodeT5 89.2 – 79.37 92.9 87.95 88.12 84.29 87.67 – 76.92 90.5 85.38 88.86 85.64

Python

Naive Copy 37.36 34 – 35.06 42.64 22.05 38.5 34.43 30.81 – 31.93 39.57 21.22 35.68
CodeBERT 82.02 57.17 – 53.94 57.64 80.32 9.01 72.56 25.24 – 8.39 17.97 48.46 4.5
PLBART 81.17 69.17 – 69.29 68 82.27 57.8 78.4 73.1 – 71.14 73.73 79.56 27.07
CodeT5 83.07 76.61 – 78.59 78.16 85.14 70.64 81.8 77.9 – 78.21 76.25 85 51.89

C#

Naive Copy 65.71 77.11 34.99 – 61.13 35.25 66.63 66.13 78.04 32.2 – 59.09 36.08 66.39
CodeBERT 87.76 89.99 59.63 – 86.13 84.41 39.19 82.48 86.86 4.68 – 80.8 53.39 11.48
PLBART 87.03 4.97 70.85 – 86.88 84.66 76.83 84.77 87 73.94 – 84.55 84.2 60.27
CodeT5 88.81 91.67 77.64 – 87.75 88.01 83.54 87.18 89.28 76.81 – 85 89.25 83.72

JS

Naive Copy 59.84 60.36 42.63 61.23 – 33.05 56.07 57.99 57.26 39.58 58.54 – 34 53.8
CodeBERT 84.97 84.1 54.19 84.69 – 83.37 31.68 79.54 77.97 3.36 80.73 – 54.02 11.04
PLBART 84.75 84.44 70.99 84.85 – 84.19 73.57 84.24 82.46 70.68 83.86 – 84.4 69.46
CodeT5 85.74 85.22 77.46 85.96 – 86.91 82.03 85.72 84.14 75.46 85.44 – 87.5 77.92

PHP

Naive Copy 37.39 35.03 22.08 35.2 33.17 – 36.62 38.15 34.32 21.36 36.08 34.44 – 37.53
CodeBERT 84.56 82.35 74.68 81.93 82.82 – 27.94 52.19 50.94 10.87 54.61 53.13 – 8.42
PLBART 84.81 82.13 76.42 78.86 85.43 – 53.62 84.56 78.61 68.9 80.26 44.71 – 56.16
CodeT5 88.59 85.88 79.47 85.67 86.46 – 83.05 89.96 86.95 80.29 87.77 87.01 – 68.74

C

Naive Copy 84.34 65.65 38.47 66.64 56.19 36.67 – 83.99 65.29 35.94 66.4 54.52 37.53 –
CodeBERT 45.55 38.79 9.83 39.09 26.85 27.03 – 15.51 17.77 6.01 14.92 13.06 8.53 –
PLBART 83.01 72.21 44.76 76.26 78.8 72.37 – 84.88 10.65 4.02 38.53 18.6 0.2 –
CodeT5 91.76 82.12 65.89 84.06 82.16 82.82 – 93.15 83.08 54.6 85.39 82.42 78.7 –

BLEU Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

Code
Synthesis

CodeBERT 17.19 18.78 7.82 18.58 19.53 22.54 5.16 21.39 27.16 19.58 30.83 25.53 29.6 8.85
PLBART 24.01 28.12 1.31 26.61 17.27 20.16 12.9 39.94 41.01 29.92 38.92 35.95 35.91 3.53
CodeT5 28.52 29.65 12.87 28.16 21.54 18.7 12.47 41.53 42.37 31.9 42.14 36.31 39.97 28.64

15

Published as a conference paper at ICLR 2023

Table 8: Number of pairwise code-code data in training, validation, and testing splits for each
language-pair. The upper triangle (in bold font) shows the number of parallel code snippets, and the
lower triangle shows the number of parallel programs. This data is used for the Code Translation and
XL Code Search tasks. (Py is short for Python. JS is short for Javascript.)

Lang C++ Java Py C# JS PHP C

C++
train – 89040 80100 85662 69507 17811 3386
val – 4419 3913 4408 3808 923 352
test – 8059 7228 7922 6965 1647 222

Java
train 9450 – 77759 87065 69341 17853 2996
val 490 – 3938 4437 3826 929 353
test 901 – 7259 8011 7005 1672 238

Py
train 9139 8991 – 75843 67219 17616 2478
val 468 471 – 3922 3750 923 311
test 878 882 – 7215 6861 1655 203

C#
train 9187 9301 8826 – 68093 17873 2958
val 488 491 470 – 3826 928 352
test 890 898 877 – 6961 1668 238

JS
train 8482 8470 8182 8367 – 17117 1875
val 472 475 459 475 – 921 309
test 878 881 864 877 – 1617 200

PHP
train 3056 3068 3003 3071 2971 – 856
val 157 158 153 158 157 – 271
test 303 307 304 307 302 – 183

C
train 402 409 380 394 308 170 –
val 59 59 59 59 59 55 –
test 45 49 48 49 49 43 –

16

Published as a conference paper at ICLR 2023

Table 9: Example of the parallel alignment of the code data in four languages. The programs given
here checks if a given number is divisible by 3 or not.

C++ Java Python PHP
/* C++ program to

find if a
number is
divisible by 3
or not */

#include<bits/stdc++.
h>

using namespace std;

/* Java program to
find if a number
is divisible by
3 or not */

class IsDivisible
{

’’’ Python program
to find if a
number is
divisible by 3
or not ’’’

/* PHP program to
find if a
number is
divisible by 3
or not */

<?php

/* Function to find
that number
divisible by 3
or not */

int check(string str
)

{

/* Function to find
that number
divisible by 3
or not */

static boolean check(
String str)

{

’’’ Function to find
that number
divisible by 3
or not ’’’

def check(num) :

/* Function to find
that number
divisible by 3
or not */

function check($str)
{

/* Compute sum of
digits */

int n = str.length()
;

int digitSum = 0;
for (int i=0; i<n; i

++)
digitSum += (str[

i]-’0’);

/* Compute sum of
digits */

int n = str.length();
int digitSum = 0;
for (int i=0; i<n; i

++)
digitSum += (str.

charAt(i)-’0’)
;

’’’ Compute sum of
digits ’’’

digitSum = 0
while num > 0 :

rem = num % 10
digitSum =

digitSum
+ rem

num = num / 10

/* Compute sum of
digits */

$n = strlen($str);
$digitSum = 0;
for ($i = 0; $i < $n

; $i++)
$digitSum += (

$str[$i] - ’
0’);

/* Check if sum of
digits is
divisible by 3

*/

return (digitSum % 3
== 0);

}

/* Check if sum of
digits is
divisible by 3 */

return (digitSum % 3
== 0);

}

’’’ Check if sum of
digits is
divisible by 3
’’’

return (digitSum
% 3 == 0)

/* Check if sum of
digits is
divisible by 3

*/

return ($digitSum %
3 == 0);

}

/* Driver code */

int main()
{
string str = ""1332"

";
check(str)? cout <<

""Yes"" : cout
<< ""No "";

return 0;
}

/* main function */

public static void
main (String[]
args)

{
String str = ""1332""

;
if(check(str))

System.out.println
(""Yes"");

else
System.out.println

(""No"");
}
}

’’’ main function
’’’

num = 1332
if(check(num)) :

print ""Yes""
else :

print ""No""

/* Driver code */

$str = "1332";
$x = check($str) ? "

Yes" : "No ";
echo($x);
?>

17

Published as a conference paper at ICLR 2023

Table 10: Example of the parallel alignment of the code data in four languages. The programs given
here aim to find the LCM of two given numbers

C# JavaScript PHP C
/* C# program to find

LCM of two
numbers */

using System;
class GFG {

/* Javascript
program to find
LCM of two
numbers */

/* PHP program to
find LCM of two
numbers */

<?php

/*C program to find
LCM of two
numbers*/

#include <stdio.h>

/* Recursive method
to return gcd of
a and b */

static int gcd(int a,
int b)

{
if (a == 0)

return b;
return gcd(b % a,

a);
}

/* Recursive
function to
return gcd of a
and b */

function gcd(a, b)
{
if (b == 0)

return a;
return gcd(b, a % b)

;
}

/* Recursive
function to
return gcd of a
and b */

function gcd($a, $b
)

{
if ($a == 0)

return $b;
return gcd($b %

$a, $a);
}

/* Recursive
function to
return gcd of a
and b */

int gcd(int a, int b
)

{
if (a == 0)

return b;
return gcd(b % a,

a);
}

/* method to return
LCM of two
numbers */

static int lcm(int a,
int b)

{
return (a / gcd(a,

b)) * b;
}

/* Function to
return LCM of
two numbers */

function lcm(a, b)
{

return (a / gcd(a
, b)) * b;

}

/* Function to
return LCM of
two numbers */

function lcm($a, $b
)

{
return ($a / gcd(

$a, $b)) *
$b;

}

/* Function to
return LCM of
two numbers */

int lcm(int a, int b
)

{
return (a / gcd(a

, b)) * b;
}

/* Driver method */

public static void
Main()

{
int a = 15, b = 20;
Console.WriteLine("

LCM of " + a + "
and " + b + "

is " + lcm(a, b))
;

}
}

/* Driver program to
test above
function */

let a = 15, b = 20;
document.write("LCM

of " + a + "
and " + b + "
is " + lcm(a, b
));

/* Driver Code */

$a = 15;
$b = 20;
echo "LCM of ",$a, "

and " ,$b, "
is ", lcm($a,
$b);

?>

/* Driver program to
test above
function */

int main()
{
int a = 15, b = 20;
printf("LCM of %d

and %d is %d ",
a, b, lcm(a, b
));

return 0;
}

18

Published as a conference paper at ICLR 2023

Table 11: Example of the parallel alignment of the code data in all seven languages. The Programs
given here aim to find two elements whose sum is closest to zero.

C++ Java Python C#
/* C++ code to find

Two elements
whose sum is
closest to zero

*/

include <bits/stdc
++.h>

include <stdlib.h>
include <math.h>
using namespace std;
void minAbsSumPair(

int arr[], int
arr_size)

{
int inv_count = 0;
int l, r, min_sum,

sum, min_l,
min_r;

/* Java code to find
Two elements
whose sum is
closest to zero

*/

import java.util.*;
import java.lang.*;
class Main
{
static void

minAbsSumPair(
int arr[], int
arr_size)

{
int inv_count = 0;
int l, r, min_sum,

sum, min_l,
min_r;

’’’ Python3 code to
find Two
elements whose
sum is
closest to
zero ’’’

def minAbsSumPair(
arr,arr_size):

inv_count = 0

/* C# code to find
Two elements
whose sum is
closest to zero

*/

using System;
class GFG
{
static void

minAbsSumPair(
int []arr, int
arr_size)

{
int l, r, min_sum,

sum, min_l,
min_r;

/* Array should have
at least two
elements */

if (arr_size < 2)
{

Console.Write("
Invalid Input"
);

return;
}

/* Array should have
at least two
elements */

if(arr_size < 2)
{

document.write("
Invalid
Input");

return;
}

’’’ Array should
have at least
two elements
’’’

if arr_size < 2:
print("Invalid

Input")
return

/* Array should have
at least two
elements */

if (arr_size < 2)
{

Console.Write("
Invalid
Input");

return;
}

/* Initialization of
values */

min_l = 0;
min_r = 1;
min_sum = arr[0] +

arr[1];
for(l = 0; l <

arr_size - 1; l
++)

{
for(r = l + 1; r <

arr_size; r
++)

{
sum = arr[l] + arr

[r];
if(abs(min_sum) >

abs(sum))
{

min_sum = sum;
min_l = l;
min_r = r;

}}}}

/* Initialization of
values */

min_l = 0;
min_r = 1;
min_sum = arr[0] +

arr[1];
for(l = 0; l <

arr_size - 1; l
++)

{
for(r = l+1; r <

arr_size; r++)
{
sum = arr[l] + arr

[r];
if(Math.abs(

min_sum) >
Math.abs(sum))

{
min_sum = sum;
min_l = l;
min_r = r;

}}}}

’’’ Initialization
of values ’’’

min_l = 0
min_r = 1
min_sum = arr[0]

+ arr[1]
for l in range

(0, arr_size
- 1):

for r in range
(l + 1,

arr_size):

sum = arr[l
] +
arr[r]

if abs(
min_sum
) >
abs(
sum):

min_sum
=
sum

min_l =
l

min_r =
r

/* Initialization of
values */

min_l = 0;
min_r = 1;
min_sum = arr[0] +

arr[1];
for (l = 0; l <

arr_size - 1; l
++)

{
for (r = l+1; r <

arr_size; r
++)

{
sum = arr[l] +

arr[r];
if (Math.Abs(

min_sum)
> Math.
Abs(sum))

{
min_sum =

sum;
min_l = l;
min_r = r;

}}}}

/* Driver Code */

int main()
{

int arr[] = {1, 60,
-10, 70, -80,
85};

minAbsSumPair(arr,
6);

return 0;
}

/* main function */

public static void
main (String[]
args)

{
int arr[] = {1,

60, -10, 70,
-80, 85};

minAbsSumPair(arr
, 6);

}
}

’’’ Driver program
to test above
function ’’’

arr = [1, 60, -10,
70, -80, 85]

minAbsSumPair(arr,
6);

/* main function */

public static void
Main ()

{
int []arr = {1,

60, -10, 70,
-80, 85};

minAbsSumPair(arr
, 6);

}
}

19

Published as a conference paper at ICLR 2023

JavaScript PHP C
/* JavaScript code to

find Two
elements whose
sum is closest
to zero */

function
minAbsSumPair(
arr, arr_size)

{
var inv_count = 0;
var l, r, min_sum,

sum, min_l,
min_r;

/* PHP program to
find the Two
elements whose
sum is closest
to zero */

function
minAbsSumPair(
$arr, $arr_size
)

{
$inv_count = 0;

/* C code to find
Two elements
whose sum is
closest to zero

*/

include <stdio.h>
include <stdlib.h>
include <math.h>
void minAbsSumPair(

int arr[], int
arr_size)

{
int inv_count = 0;
int l, r, min_sum,

sum, min_l,
min_r;

/* Array should have
at least two
elements */

if(arr_size < 2)
{

document.write("
Invalid Input"
);

return;
}

/* Array should have
at least two
elements */

if($arr_size < 2)
{

echo "Invalid
Input";

return;
}

/* Array should have
at least two
elements */

if(arr_size < 2)
{
printf("Invalid

Input");
return;
}

/* Initialization of
values */

min_l = 0;
min_r = 1;
min_sum = arr[0] +

arr[1];
for(l = 0; l <

arr_size - 1; l
++)

{
for(r = l + 1; r <

arr_size; r
++)

{
sum = arr[l] +

arr[r];
if(Math.abs(

min_sum) >
Math.abs(
sum))

{
min_sum = sum;
min_l = l;
min_r = r;

}}}}

/* Initialization of
values */

$min_l = 0;
$min_r = 1;
$min_sum = $arr[0] +

$arr[1];
for($l = 0; $l <

$arr_size - 1;
$l++)

{
for($r = $l+1; $r

< $arr_size
; $r++)

{
$sum = $arr[$l] +

$arr[$r];
if(abs($min_sum)

> abs($sum))
{

$min_sum =
$sum;

$min_l = $l;
$min_r = $r;

}}}}

/* Initialization of
values */

min_l = 0;
min_r = 1;
min_sum = arr[0] +

arr[1];
for(l = 0; l <

arr_size - 1; l
++)

{
for(r = l+1; r <

arr_size; r++)
{
sum = arr[l] + arr

[r];
if(abs(min_sum) >

abs(sum))
{
min_sum = sum;
min_l = l;
min_r = r;

}}}}

/* Driver Code */

arr = new Array(1, 60,
-10, 70, -80,

85);
minAbsSumPair(arr, 6)

;

/* Driver Code */

$arr = array(1, 60,
-10, 70, -80,
85);

minAbsSumPair($arr,
6);

?>

/* Driver program to
test above
function */

int main()
{
int arr[] = {1, 60,

-10, 70, -80,
85};

minAbsSumPair(arr,
6);

getchar();
return 0;

}

20

	Introduction
	The XLCoST dataset
	Definitions
	Data Characteristics
	Data Collection and Processing
	Data Alignment
	Data Splitting

	Code Tasks
	Experiments
	Evaluation Metrics and Baselines
	Result Analysis
	Limitations and Future Work

	Conclusion
	APPENDIX
	Related work
	BLEU Scores for Code Generation
	Dataset Statistics
	More Details about Data Collection
	Creating Data Splits
	More Details about XL Code Search
	More Details about Evaluation Metrics

	Dataset Information
	Motivation
	Intended Use
	Author Statement
	Maintenance
	Societal Impact

