
Published as a conference paper at ICLR 2023

A GENERIC PROMPT FOR AN LLM THAT ENABLES NL-
TO-SQL ACROSS DOMAINS AND COMPOSITIONS

Aseem Arora, Shabbirhussain Bhaisaheb, Manasi Patwardhan,
Lovekesh Vig & Gautam Shroff
TCS Research, India
{aseem.arora, shabbirhussain.b, manasi.patwardhan,
lovekesh.vig, gautam.shroff}@tcs.com

ABSTRACT

Large Language Models (LLMs) pretrained for code generation have demonstrated
remarkable performance for multiple high level reasoning tasks. One such challeng-
ing task is Cross-Domain and Cross-Compositional generalization of Text-to-SQL
semantic parsing, where the model is expected to exhibit generalization to novel
compositions not seen during training. In this paper, we evaluate the capabilities
of Codex, the GPT3 model pretrained with code, in both zero-shot and few-shot
settings. Existing LLM (Codex) based approaches for this task rely on inference-
time retrieval of similar few-shot samples from the training set, to build a run-time
prompt for test time SQL query generation. In contrast, we devise an algorithm
to come up with a minimal set of few-shots from the available data with com-
plete coverage of SQL clauses, operators and functions and maximum coverage
of available domains. We combine these few-shots with the out-of-distribution
test query to define what we term as a Generic Prompt (GP), which is further
used to generate the corresponding SQL. The GP, being common across distinct
test queries, not only provides us with a more efficient solution avoiding test time
retrieval, but also yields SOTA few-shot cross-domain generalization results with
an execution accuracy of 70.64% on the Spider-Dev set. We also evaluate the
Generic Prompt on the App-Dev split of Spider-CG dataset for compositional gen-
eralization and Kaggle DBQA zero-shot cross-domain generation dataset obtaining
few shot execution accuracy of 55.41% and 32.61%, respectively, with 3.25% and
11.41% absolute improvement over the zero-shot performance with Codex. We
also showcase that for all the three datasets, the GP leads to a better performance
than a prompt constructed by equal number of randomly selected exemplars from
the available data.

1 INTRODUCTION

Recently, Large Language Models (LLMs) such as T5Roberts et al. (2019), GPT3Brown et al.
(2020a), CodexChen et al. (2021b), PaLMChowdhery et al. (2022), pretrained with massive volumes
of data have shown to improve performance for multiple reasoning tasks using in-context learning
Brown et al. (2020b); Huang & Chang (2022), including program synthesis Austin et al. (2021);
Jain et al. (2021); Nijkamp et al. (2022) and semantic parsing Shin & Durme (2021); Drozdov et al.
(2022); Shin & Durme (2021); Shin et al. (2021). There are a few recent approaches where LLMs are
specifically used for Text-to-SQL semantic parsing in (i) zero-shot setting Rajkumar et al. (2022a)
where only the test Natural Language (NL) query constitutes the prompt, (ii) few-shot setting where
exemplars similar to the test query in the target domain (SPIDER Yu et al. (2018b) Dev Split) are
retrieved from the available training data (SPIDER Yu et al. (2018b) train split). Note that the database
domains for the exemplars may be distinct from the target domain Poesia et al. (2022a) and (iii)
few-shot setting where the exemplars (termed templates) are selected from a small amount of data
from the target-domain ensuring maximum coverage of compositions Rajkumar et al. (2022a); Qiu
et al. (2022); Hosseini et al. (2022); Yang et al. (2022) (For example, the GeoQuery dataset Tang &
Mooney (2001); Zelle & Mooney (1996)). In few-shot settings, the selected exemplars, along with
the test NL query, form the prompt for the LLM.

1

Published as a conference paper at ICLR 2023

In this paper, we are mainly interested in (ii) i.e. cross-domain generalization, where the test queries
may not have the set-of compositions covered in the training data (cross-composition generalizability).
Moreover, considering a purely cross-domain setting, as opposed to (iii) above, we assume no
availability of in-domain few-shots (exemplars belonging to the target databases). Synchromesh
Poesia et al. (2022a) has a similar setting, except they retrieve exemplars during run-time (at inference)
by (a) selecting semantically similar NL queries as exemplars and (b) Target Similarity Tuning (TST)
where the exemplars with similar target programs, irrespective of differences in the surface natural
language features, are selected. This reliance on inference-time retrieval of similar few-shot samples
from the available data to build a run-time prompt and generate SQL for a test query, results in a
less efficient solution. As opposed to this, we devise an algorithm to come up with a minimal set-of
few-shot exemplars from the available data where the set-of selected exemplars ensures complete
coverage of SQL clauses, operators and functions and maximizes coverage of available domains.
We combine these few-shots with the out-of-distribution test query to define what we term as a
Generic Prompt (GP), which is further used to generate the corresponding SQL. As the generation
of the GP, which is common across distinct test queries, is offline, it provides us with a more time-
efficient solution obviating the need for real time retrieval. Moreover, with this prompt we obtain
state-of-the-art few-shot cross-domain generalization results on the Spider dataset with an execution
accuracy of 70.64%. We further obtain an execution accuracy of (i) 55.41% on the more complex
Spider-CG dataset for queries on unseen databases with unseen compositions and (ii) 32.26% on the
Kaggle-DBQA Lee et al. (2021b) zero-shot cross-domain generalization dataset. We establish that
these results are better than zero-shot results and few-shot results with the same number of randomly
selected exemplars as in GP (we term this as Random Prompt - RP).

2 RELATED WORK

Rajkumar et al. (2022a) has attempted to use LLM for Text-to-SQL semantic parsing task in zero-shot
as well as few-shot settings. For zero-shot setting, they experiment with various formats of the test
query along with the database schema with which the LLMs are prompted, such as the APIDocs
schema format (explained in detail in section 4 and Table 4) or via SQL ‘CREATE TABLE’ commands,
with and without randomly selected data rows from the table. For the few-shot setting, Rajkumar
et al. (2022a); Qiu et al. (2022); Hosseini et al. (2022); Yang et al. (2022) focus on cross-composition
generalization and provide the queries which are posed on the target database itself as exemplars
(cross-domain setting is not considered). Thus, the assumption is that few queries are available
for a new database. They work with datasets such as GeoQuery (Tang & Mooney (2001); Zelle &
Mooney (1996)) with data in US geography domain, Scholar (Iyer et al. (2017)) with data in academic
publications or a dataset designed for queries in E-commerce domain (Yang et al. (2022)). In our
approach, we assume no availability of annotated data in terms of SQL programs for the given textual
(natural language) queries and, thus, completely a cross-domain setting.

Sychromesh (Poesia et al. (2022a)) assumes a cross-domain setting and, for the test query in the
target domain, similar queries from the source domain are used as exemplars. 5-shot samples with NL
queries and their corresponding SQLs are extracted as exemplars based on (i) the semantic similarity
of the natural language queries with the test query, and (ii) Target Similarity Tuning (TST) where the
exemplars with similar target programs, irrespective of differences in the natural language queries,
are selected. In addition to TST, the authors perform constrained semantic decoding (CSD), which
reduces the implementation errors in the generated SQLs by ensuring that the generated tokens lead
to correct programs following a pre-specified grammar. For every new test query, the few-shots in the
prompt have to be retrieved during run-time to match the given query. This reliance on inference-time
retrieval to build a run-time prompt and generate SQL for a test query, leads to an inefficient solution.
As opposed to this, we devise an algorithm to come up with a minimal set-of few-shot exemplars
from the available data, where the set-of selected exemplars ensures complete coverage of SQL
clauses, operators and functions and maximal coverage of domains. We combine these few-shots
with the out-of-distribution test query to define what we term as a Generic Prompt (GP), which is
fed to the LLM to generate the corresponding SQL. As the generation of the GP, which is common
across distinct test queries, is offline, it provides us with a more time-efficient solution. Also, with
the well-curated few-shots our approach yields better performance than all the above discussed
approaches.

2

Published as a conference paper at ICLR 2023

Rajkumar et al. (2022a) have addressed the concerns around possible memorization of existing
datasets such as SpiderYu et al. (2018a) by large language models such as Codex, which are trained
on code data. The possibility of memorization arises as the the Spider Dev split file (dev.sql) resides
on Github1. However, prompting Codex with verbatim fragments of this file leads to generations
which do not match with the file contents. For example, given a question in the format specified
in the file, the table aliasing strategy followed in the generated SQLs does not match with the gold
SQLs provided in the file. On the similar lines of Rajkumar et al. (2022a), our prompting format of
text queries (APIDocs+Values: Explained in Section 4 and Table 4 in detail) is completely different
than the format in which NL-SQL pairs are stored in the Spider Dev split file. With the unique GP
based approach, in the paper, along with the Spider dataset Yu et al. (2018b), we show performance
improvements over zero-shot setting for other datasets such as Spider-CG Gan et al. (2022) and
Kaggle DBQA Lee et al. (2021a), for which the evaluation files are not residing on Github2, for the
LLMs (Codex in our case). This eliminates the possibility of memorization by models like Codex for
these datasets.

3 DATASET

We use three Text-to-SQL datasets for carrying out the experiments with our proposed approach,
namely, Spider Yu et al. (2018a), Spider-CG Gan et al. (2022), and the Kaggle-DBQA Lee et al.
(2021a) datasets.

Spider dataset: Spider is a human-annotated, large-scale, complex, and cross-domain Text-to-SQL
benchmark dataset. The dataset consists of a total of 200 databases with 140, 20, 40 databases in the
training, development and test splits, respectively. The respective splits contain 7000, 1034, and 2147
Text-to-SQL pairs however the Spider test-split is not available publicly. We analyse the performance
of our model on the Spider development split (Spider-Dev).

Spider-CG dataset: The Spider-CG is designed for measuring the compositional generalization
performance of Text-to-SQL models. The authors first modify the Spider dataset Yu et al. (2018a)
to obtain the Spider-SS dataset where the Text-to-SQL pairs from Spider-Train are transformed to
corresponding sub-sentences and NatSQL pairs. The sub-sentences are obtained using a sentence-split
algorithm and the corresponding NatSQL is manually annotated. Based on Spider-SS, Spider-CG
is constructed by either substituting sub-sentences with those from other samples (CG-SUB), or
composing two sub-sentences to form a more complicated sample (CG-APP). The CG-SUB consists
of a train split (CG-SUBT) and a development split (CG-SUBD). Similarly, CG-APP is divided
in a train split (CG-APPT) with 18,793 samples and a development split (CG-APPD) with 3,237
samples.As our focus is mostly on cross-domain generalization, we evaluate our approach on the
CG-APPD. This is a more difficult split to test on than (Spider-Dev) as along with cross-domain, it
has out-of-distribution queries with respect to the compositions.

Kaggle-DBQA dataset: This is a cross-domain Text-to-SQL evaluation dataset of real Web databases.
The dataset covers a total of 8 databases and for each database there is a set of fine-tuning and test
examples. The 8 databases are (i) Nuclear with 10 and 22, (ii) Crime with 9 and 18, (iii) Pesticide
with 16 and 34, (iv) MathScore with 9 and 19, (v) Baseball with 12 and 27, (vi) Fires with 12 and
25, (vii) WhatCD with 13 and 28, and (viii) Soccer with 6 and 12 fine-tuning and test examples,
respectively.

4 APPROACH

We use LLMs in both zero-shot and few-shot settings. In the zero-shot setting the prompt only has
the test query along with its database schema in a specific format, whereas for the few-shot setting we
have come up with an algorithm which selects exemplars from Spider-Train dataset with complete
coverage of SQL clauses, operators and functions and maximum coverage of domains (databases).
We use these exemplars appended with the test query in a specific format to generate the Generic
Prompt (GP). In few-shot settings, the GP is provided as an input to the LLM to generate the SQL.
We perform post-processing on the generated queries and then execute them on the database to get the

1https://github.com/taoyds/spider/tree/master/evaluation examples
2https://github.com/chiahsuan156/KaggleDBQA; https://github.com/ygan/SpiderSS-SpiderCG

3

Published as a conference paper at ICLR 2023

predicted answer. The predicted answer is compared with the ground truth (GT) answer to compute
the execution accuracy. The details of the LLM we use, the algorithm and the formats of the test
query and the exemplars are discussed in detail below.

Algorithm 1: Generic Prompt Creation
Input :D = {dbj , {tij , sij , aij}

Nj
i=1}

M
j=1 ▷ Available

Dataset with database, text query, SQL query, answer
tuples,
T = {dbl, {tkl, skl, akl}Kk=1l}Ll=1 ▷ TestSet,
O = {Operators, Clauses, Functions}

Output :GP ▷ Generic Prompt
Initial Stage : E ←Φ ▷ Exemplars
i← 1,
while i ̸= Nm ∗M do

j ← 1
while j ̸= M do

Oe ← Extract Operators(sij) ▷ Operator extracted from
SQL
if Oe ∈ O then

E ← E + {dbj , tij , sij} ▷ Add tuple as an
Exemplar if Operators were not Covered
O ← O − Oe ▷ Remove covered operators
for x in E do

if Extract Operators(sx ∈ x) ∈ Oe then
end if
E ← E − {dbx, tx, sx} ▷ Remove
Exemplar Query if Extracted Operators are
super-set of Exemplar Query Operators

end for
end if
j ← j + 1

end while
i← i + 1

end while
GP ← E + {dbl, tkl, skl} ∈ T

SQLite SQL tables, with their properties:
#
Addresses(‘address id’, ‘line 1’, ‘line 2’, ‘city’, ‘zip postcode’,
‘state province county’, ‘country’)
People(‘person id’, ‘first name’, ‘middle name’, ‘last name’,
‘cell mobile number’, ‘email address’, ‘login name’, ‘password’)
Students(‘student id’, ‘student details’)
Courses(‘course id’, ‘course name’, ‘course description’, ‘other details’)
People Addresses(‘person address id’, ‘person id’, ‘address id’,
‘date from’, ‘date to’)
Student Course Registrations(‘student id’, ‘course id’, ‘registration date’)
Student Course Attendance(‘student id’, ‘course id’, ‘date of attendance’)
Candidates(‘candidate id’, ‘candidate details’)
Candidate Assessments(‘candidate id’, ‘qualification’, ‘assessment date’,
‘asessment outcome code’)
#
which course has most number of registered students?
SELECT T1.course name FROM courses AS T1 JOIN stu-
dent course registrations AS T2 ON T1.course id = T2.course Id GROUP
BY T1.course id ORDER BY count(*) DESC LIMIT 1;

........

SQLite SQL tables, with their properties:
#
Rooms(‘RoomId’, ‘roomName’, ‘beds’, ‘bedType’, ‘maxOccupancy’,
‘basePrice’, ‘decor’)
Reservations(‘Code’, ‘Room’, ‘CheckIn’, ‘CheckOut’, ‘Rate’, ‘LastName’,
‘FirstName’, ‘Adults’, ‘Kids’)
#
Find the first and last names of people who payed more than the rooms’
base prices.
SELECT T1.firstname , T1.lastname FROM Reservations AS T1 JOIN Rooms
AS T2 ON T1.Room = T2.RoomId WHERE T1.Rate - T2.basePrice > 0;

Table 1: Generic Prompt (Partial for Illustration)

Large Language Model: We choose Codex Chen et al. (2021a) (Code-Da-Vincci) Chen et al.
(2021b) from OpenAI with 175B parameters as the LLM, because it provides few-shot state-of-the-art
performance on most of the semantic parsing tasks including Text-to-SQL Rajkumar et al. (2022b), as
well as showcases compositional generalization capabilities Qiu et al. (2022); Hosseini et al. (2022).
We access the OpenAI Codex using its API and use in-context learning to generate SQLs for the
given NL query with our uniquely defined prompt.

Prompt Design Algorithm: For prompt design, we assume to have a dataset D =

{dbj , {tij , sij , aij}
Nj

i=1}Mj=1, where t and s are the text-SQL query pairs posed on database db and a
are the answers to the SQL queries after execution, Nj are total number of query pairs belonging to
database dbj , M are total number of databases.T = {dbl, {tkl, skl, akl}Kl

k=1}Ll=1 of
∑L

l=1 Kl query
pairs and L databases, such that {dbj}Mj=1 ∩ {dbl}Ll=1 = ϕ. As we consider the cross-domain setting
we do not have any overlap between the training and test set databases.

We manually collect SQL operators, clauses and functions to form a set-of primitive operations O.
The final set consists of operations covered by queries {qi} ∈ D. The primitive operations include (i)
SQL Clauses such as ‘FROM’, ‘HAVING’, ‘WHERE’, ‘ORDER BY’, etc, (ii) SQL Operators such
as arithmetic (+, -, *, /, %), comparison (=, !=, <, >, etc) and logical (ALL, AND, ANY, LIKE, etc)
operators and (iii) SQL Functions such as (AVG, COUNT, MAX, MIN, etc). To select the few-shot
exemplars E for the GP we traverse the query pairs database wise, such that the first NL-SQL query
pairs corresponding to every database are traversed first followed by the 2nd and so on. This allows
for maximum coverage of the databases. As we traverse samples in D, a sample {dbj , ti, si} becomes
part of E, if si covers at least one uncovered primitive operation in O. If currently traversed query si
covers a super-set of primitive operations of a query sx in the existing exemplar {dbx, tx, sx} ∈ E
then {dbi, ti, si} replaces {dbx, tx, sx} in E. The algorithm terminates when all the queries are
visited once and all the possible primitive operations in O are covered. This allows us to choose a
minimal set of samples as exemplars to cover the complete set of primitive operations. The detailed
algorithm is explained in Algorithm 1. We use the Spider-train set as D and Spider-dev set as T . Our
algorithm yields 18 exemplars as few-shots covering a total of 15 databases. The selected queries
cover a total of 32 SQL operators and clauses. We use API-Doc format for the exemplars illustrated

4

Published as a conference paper at ICLR 2023

SQLite SQL tables with their properties:
#
AREA CODE STATE(‘area code’, ‘state’)
range of values of column area code (201, 989)
unique values of column state (‘TN’, ‘NY’, ‘RI’, ‘KS’, ‘CT’, ‘VA’)
VOTES(‘vote id’, ‘state’, ‘contestant number’)
range of values of column vote id (1, 5)
unique values of column state (‘NY’, ‘CA’, ‘NJ’)
range of values of column contestant number (2, 5)
#
Return the names of the contestants whose names contain the substring
‘Al’ , ordered by contestant name descending .
SELECT

Table 2: Zero-shot query example

Before post-processing After post-processing
SELECT Airline FROM air-
lines WHERE Abbreviation = ‘
UAL ’ AND Country = ‘ USA
’;

SELECT Airline FROM air-
lines WHERE Abbreviation =
‘UAL’ AND Country = ‘USA’;

SELECT Airline FROM
flights GROUP BY Airline
HAVING count(*) >= 10
UNION SELECT Airline
FROM airlines WHERE
Airline = ’ JetBlue Airways
’ OR Airline = ’ SpiceJet
Airways’;

SELECT Airline FROM
flights GROUP BY Airline
HAVING count(*) >= 10
UNION SELECT Airline
FROM airlines WHERE Air-
line = ’JetBlue Airways’ OR
Airline = ’SpiceJet Airways’;

Table 3: Example of a query with post-processing

in Table 1. API Docs consist of the sequence of tables along with the column names followed by the
text (NL) query, followed by its SQL.

Test Query Format: The test query, which is a sample {dbl, tlk} ∈ T is added to the prompt in a
specific format depicted in Table 2. It is database schema followed by the text (NL) query in the
same API Doc format. However, to make the model better understand the details of the schema, we
also add the column values in the given format. For categorical columns, we add unique column
values while for the numerical columns of type int or float, we add the existing range of values in the
column. Due to the limitation on the number of maximum token length allowable by the OpenAI
Codex which is 8000 tokens, we threshold the unique values for categorical columns to T per column.
We empirically found the value of T = 10. In zero-shot settings the prompt consists of only the test
sample in the specified format. Whereas, in the few-shot setting the test sample is appended to the
few-shot exemplars to form the GP as outlined in Algorithm 1.

Post-processing: We post-process the generated SQL queries. We notice that for some of the
generated queries, an extra space is generated at the beginning and/or at the end of the quotes
depicting column values of the query, as shown in the examples illustrated in Table 3. We remove
these trailing spaces as the post-processing step.

5 RESULTS AND DISCUSSION

For bench-marking, we use existing zero-shot Rajkumar et al. (2022b) and few-shot Poesia et al.
(2022b) approaches which have used Codex for generating SQL from Natural Language Queries.
We also compare our results with state-of-the-art supervised approaches in the literature. We use
execution accuracy as the metric to compare the results.

As illustrated in the Table 4, Rajkumar et al. (2022b) prompts Codex with the test sample in distinct
formats: (i) Only NL question, (ii) API Docs: which is same as our format represented in Figure 2
and explained in section 4, except the column values are not added to the table schema, (iii) API Docs
+ Select X: Add ‘X’ rows of each table to (ii), (iv) Create Table: SQL table creation command (v)
Create Table + Select X: Add ‘X’ rows of each table to (iv). For Spider-Dev, Rajkumar et al. (2022b)
have their best zero-shot performance with API DOCS + Select 3, which yields 60.3% execution
accuracy. Our zero-shot prompt ((API Docs + Values) setting demonstrates superior performance
of 68.31% as compared to the closest format of API Docs + Select 10 by Rajkumar et al. (2022b),
which yields them 60.8% execution accuracy. Additionally, with post-processing (API Docs + Values
+ PoPr) we get further improvement to 70.16%.

The few-shot approach discussed in Synchromesh Poesia et al. (2022b) which uses 5 most similar
exemplars. As constraint decoding is not the focus our approach we compare our performance with
the execution accuracy by Synchromesh Poesia et al. (2022b) using Target Semantic Tuning (TST)
and without Constraint Semantic Decoding (CSD), which is 60% with Codex for Spider-Dev dataset.
As compared to their approach, our approach achieves an execution accuracy of 69.48% in the setting
Generic prompt + API docs + Values, showing an absolute improvement of 9.48% execution accuracy.
When we additionally use post-processing (Generic prompt + API docs + Values + PoPr), the
performance further improves to 70.64%, showing an absolute improvement of 10.64% over the
TST setting in Poesia et al. (2022b). Though we use 18-shots in our GP based approach, which is
higher than the 5-shots used in Poesia et al. (2022b); these 18-shots are consistent across all the test
queries. As Poesia et al. (2022b) use similarity based exemplar retrieval approach, for them Top-K,

5

Published as a conference paper at ICLR 2023

Approach Model Prompt Setting Description Supervised
/ Zero /
Few Shot

Spider-
Dev

CG-
APP-D

Kaggle-
DBQA

Execution Accuracy
Gan et al. (2022) RATSQL -

Models trained with
Spider-Train

Supervised 76.70% 75.10% 13.56%†
Rubin & Berant (2020) SmBOP - Supervised 74.40% 59.60% 26.49%
Scholak et al. (2021) Picard - Supervised 74.18% 59.65% 26.48%
Qi et al. (2022) RASAT - Supervised 76.60% 59.90% 27.47%

Poesia et al. (2022b)

GPT-3 13B NLS

NLS: Natural Language based
Similarity
TST: Target Similarity Tuning

Few(5) 16% - -
TST Few(5) 14% - -

GPT-3 175B NLS Few(5) 28% - -
TST Few(5) 31% - -

Codex 175B
NLS Few(5) 56% - -
TST Few(5) 60% - -

Rajkumar et al. (2022b) Codex 175B

Question NL query Zero 8.30% - -
API Docs NL query + tables + columns Zero 56.8% -
+ Select 1

Select X: API docs + X rows
sampled from each table Zero

60.9% - -
+ Select 3 60.3% - -
+ Select 5 60.5% - -
+ Select 10 60.8% - -
Create Table Table Creation Commands Zero 59.9% - -
+ Select 1

Create Table + X rows
sampled from each table Zero

64.8% - -
+ Select 3 67.0% - -
+ Select 5 65.3% - -
+ Select 10 63.3% - -

Our approach Codex 175B

API Docs + Values API Docs + R unique values
for categorical columns and
range for numerical columns

Zero 68.31% 50.50% 21.20%

*Random prompt + API docs + Values Randomly selected exemplars
in API docs format + Test
Query in API docs + Values
format

Few(18) 66.52% 51.55% 29.83%

Generic prompt + API docs + Values Generic Prompt with a well cu-
rated set of exemplars selected
by an algorithm in API docs
format + Test Query in (API
docs + Values) format

Few(18) 69.48% 53.59% 32.61%

API Docs + Values + PoPr

PoPr: Post-processing

Zero 70.16% 52.16% 21.20%
*Random prompt + API docs + Values + PoPr Few (18) 66.52% 51.55% 29.83%
Generic prompt + API docs + Values + PoPr 70.64% 55.41% 32.61%

Table 4: Execution Accuracy Results. (†) indicates Exact Match results from Lee et al. (2021c). (*)
indicates results are averaged over Three runs

.

Prompt setting
Spider-Dev

Execution Accuracy
Easy Medium Hard Extra All

API docs + Values 81.05% 72.75% 56.90% 49.40% 68.31%
*Random prompt + API docs + Values 81.25% 70.27% 56.61% 44.88% 66.52%
Generic prompt + API docs + Values 79.44% 73.65% 63.79% 49.40% 69.48%
API Docs + Values + PoPr 83.87% 75.00% 57.47% 50.00% 70.16%
*Random prompt + API docs + Values 81.25% 70.27% 56.61% 44.88% 66.52%
Generic prompt + API docs + Values + PoPr 81.85% 74.77% 64.37% 49.40% 70.64%

Table 5: Results of our approach on Spider-Dev based on hardness of the queries. (*) indicates results
are averaged over Three runs

where K > 5, may not yield better results than K = 5. Thus, number of few-shots used by our GP
approach are not directly comparable with the number of few-shots selected by Poesia et al. (2022b).

For CG-APP-D and Kaggle-DBQA, Rajkumar et al. (2022b) and Poesia et al. (2022b) haven’t reported
any results. Overall, for all three datasets our GP based approach demonstrates an improvement over
the zero-shot with (average absolute improvement of 5.04% execution accuracy across the datasets)
and without (average absolute improvement of 5.22% execution accuracy across the datasets) post-
processing.

We believe that in retrieval based few-shot techniques like Synchromesh Poesia et al. (2022b) the
number of exemplars > 5 may not yield better performance. In Synchromesh, similar exemplars
are selected using a neural network based scoring function, trained with the tree-edit distance based
similarity between the corresponding SQLs of the natural language query pairs. Top-K exemplars,
which serve as few-shots, are retrieved. This ensures that the resulting few-shots follow the same SQL
query composition, as that of the test natural language query having maximally overlapping operators,
clauses and functions. These retrieval based approaches do not ensure comprehensive coverage of
all SQL operators, clauses and functions, but coverage of only the ones that fit into the composition
of the test query. Also, Synchromesh must have empirically found the optimal value of K to be 5,
yielding the best performance for the task. To support our above discussed hypothesis empirically, as
the code of Synchromesh is not available, we have followed their setup and computed results with
selecting 18 similar exemplars as few-shots. On KaggleDBQA test set Lee et al. (2021a) , this yields
an execution accuracy of 29.83%, which is lower than the GP accuracy (32.61% 4). Similarly for

6

Published as a conference paper at ICLR 2023

Spider Dev Yu et al. (2018a) dataset, with similar 18 few-shots, the execution accuracy is 69.19%,
which is inferior to GP based approach (70.64% 4). These results after post-processing.

To fairly demonstrate the effectiveness of the GP created with our novel algorithm, we also report
the results obtained with using a Random Prompt (RP) replacing the GP with the same number
(18) of randomly selected exemplars as that of GP from the Spider-Train dataset. We create three
distinct RPs by randomly sampling the queries from Spider-Train with replacement. We observe
that the results of each RP is inferior to the GP results for the respective datasets. However, in
Table 4 we illustrate the performance averaged over the three iterations of the RP for each dataset.
Overall, for all three datasets our GP based approach demonstrates an improvement over the RP both
with (average absolute improvement of 3.59% execution accuracy across the datasets) and without
(average absolute improvement of 2.59% execution accuracy across the datasets) post-processing.
This demonstrates that the well-curated GP carries information necessary to address more queries
than the information carried by the RP which consists of same number of exemplars. We also observe
that for the Spider-Dev dataset RP leads to inferior results as compared to zero-shot acting as noise,
whereas for Spider-CG dataset, the performance of RP is comparable to zero-shot demonstrating no
additional benefit of using the randomly selected exemplars as few-shots in the prompt. This also
illustrates the efficacy of our GP based approach and the novelty of our algorithm used to choose the
exemplars to construct the GP.

As constraint decoding is not the focus of this paper, for fair comparison, we compute the execution
accuracy results (depicted in Table 4) without constraint decoding for the supervised models Picard
Scholak et al. (2021) and RASAT Qi et al. (2022). As opposed to the our zero-shot results, our
well-curated GP with only 18 exemplars provide comparable results (achieving 70.64% and 55.41%
execution accuracy on Spider-Dev and CG-APP-Dev) with the state-of-the-art supervised approaches
such as SmBOP Rubin & Berant (2020), Picard Scholak et al. (2021) and RASAT Qi et al. (2022).
The Results with RATSQL Gan et al. (2022) are not directly comparable with the other supervised
approaches as it uses additional NATSQL based supervision. For KaggleDBQA our zero-shot results
(with 21.20% execution accuracy) are inferior to the supervised approaches, however the GP results
(with 32.61% execution accuracy) are superior to the supervised approaches. This shows for our of
domain queries GP setting works better than the zero-shot and yields at-par or better performance than
supervised setting. Also, though GP yields better performance, the overall low execution accuracy
numbers on KaggleDBQA and CG-APP-Dev datasets demonstrates the scope for Out-of-Distribution
setting in terms of addressing in cross-domain and cross-composition queries. Further, Table 5
provides results on the Spider-Dev dataset based on the query hardness annotation provided in the
dataset. It was observed that without post-processing the GP yields performance improvement for
harder queries.

6 QUALITATIVE ANALYSIS

We perform qualitative analysis on a set of sampled queries as shown in Table 6. We divide our
analysis into three cases:(i) Samples for which SQLs generated by zero-shot prompt are rectified by
the GP, (ii) Samples for which both zero-shot and GP fail to generate correct SQLs and (iii) Samples
for which SQLs generated by zero-shot are correct, but by the GP are incorrect. We randomly sample
40 queries for each case (120 queries in total) for manual analysis.

For the first case, we classify the samples in three categories (Table 6). The percentage of queries
belonging to each category is provided in the column ‘%’. The first category is ‘Over-simplified’
(example 1), where zero-shot generates over-simplified SQLs by not involving the required ‘JOINs’
in the query, but the GP fixes the same. The second category is ‘Over-complicated’ (example 2)
where, an unnecessary ‘ORDER BY’ clause is observed in the zero-shot generated query further
rectified by GP. The third category is ‘Logically Incorrect’, where the generated zero-shot query
does not semantically match with the given NL description. For example in example 3 of table 6, the
zero-shot SQL incorrectly puts a condition on ‘trainscript id = 1’, but gets rectified by the GP.

For the samples belonging to the second case, we find that there is a set of queries, both zero-shot
and GP generated, which are ‘Over-simplified’ (example 4), and specifically, use no JOIN, which is
required. We also find a set of queries where ‘Redundant columns’ are used (example 5). The third
set of queries are of category ‘Incorrect Tables’ where, wrong tables are used in the queries (example

7

Published as a conference paper at ICLR 2023

Sr.
No.

Category Sample ZS GP %

C
as

e
1

1 Over-
simplified;
No JOIN
used

NL: Which city has most number of arriving flights?
GT: SELECT T1.City FROM AIRPORTS AS T1 JOIN FLIGHTS AS T2 ON T1.AirportCode =
T2.DestAirport GROUP BY T1.City ORDER BY count(*) DESC LIMIT 1
ZS: SELECT DestAirport, COUNT(*) AS count FROM flights GROUP BY DestAirport ORDER BY count
DESC LIMIT 1
GP: SELECT T1.City FROM airports AS T1 JOIN flights AS T2 ON T1.AirportCode = T2.DestAirport
GROUP BY T1.City ORDER BY count(*) DESC LIMIT 1

✗ ✓ 30%

2 Over-
complicated;
Additional
ORDER BY

NL: What are the names of countries that speak more than 2 languages, as well as how many languages
they speak?
GT: SELECT COUNT(T2.Language) , T1.Name FROM country AS T1 JOIN countrylanguage AS T2 ON
T1.Code = T2.CountryCode GROUP BY T1.Name HAVING COUNT(*) ¿ 2
ZS: SELECT CountryCode, COUNT(*) AS Languages FROM countrylanguage GROUP BY CountryCode
HAVING COUNT(*) ¿ 2 ORDER BY Languages DESC
GP: SELECT T1.name , count(*) FROM country AS T1 JOIN countrylanguage AS T2 ON T1.code =
T2.countrycode GROUP BY T1.code HAVING count(*) ¿ 2

✗ ✓ 22.5%

3 Logically in-
correct

NL: When is the first transcript released? List the date and details.
GT: SELECT transcript date, other details FROM Transcripts ORDER BY transcript date ASC LIMIT 1
ZS SELECT transcript date, other details FROM Transcripts WHERE transcript id = 1
GP: SELECT transcript date , other details FROM transcripts ORDER BY transcript date LIMIT 1

✗ ✓ 47.5%

C
as

e
2

4 Over-
simplified;
No JOIN
used

NL: Which region is the city Kabul located in?
GT: SELECT Region FROM country AS T1 JOIN city AS T2 ON T1.Code = T2.CountryCode WHERE
T2.Name = ”Kabul”
ZS: SELECT District FROM city WHERE Name = ‘Kabul’
GP: SELECT district FROM city WHERE name = ‘Kabul’

✗ ✗ 45%

5 Redundant
columns

NL: What is the most common nationality of people?
GT: SELECT Nationality FROM people GROUP BY Nationality ORDER BY COUNT(*) DESC LIMIT 1
ZS: SELECT Nationality, COUNT(Nationality) AS Nationality Count FROM people GROUP BY National-
ity ORDER BY Nationality Count DESC LIMIT 1
GP: SELECT Nationality, count(*) FROM people GROUP BY Nationality ORDER BY count(*) DESC
LIMIT 1

✗ ✗ 32.5%

6 Incorrect Ta-
ble

NL: When did the episode ”A Love of a Lifetime” air?
GT: SELECT Air Date FROM TV series WHERE Episode = ”A Love of a Lifetime”
ZS: SELECT Original air date FROM Cartoon WHERE Title = ‘A Love of a Lifetime’
GP: SELECT Original air date FROM Cartoon WHERE Title = ‘A Love of a Lifetime’

✗ ✗ 12.5%

7 Logically in-
correct

NL: What is the maximum capacity and the average of all stadiums?
GT: select max(capacity), average from stadium
ZS: SELECT MAX(Capacity), AVG(Average) FROM stadium
GP: SELECT MAX(capacity), AVG(capacity) FROM stadium

✗ ✗ 10%

C
as

e
3

8 Over-
complicated;
Unneces-
sary JOIN

NL: What are the emails of the professionals living in either the state of Hawaii or the state of Wisconsin?
GT: SELECT email address FROM Professionals WHERE state = ‘Hawaii’ OR state = ‘Wisconsin’
ZS: SELECT email address FROM Professionals WHERE state = ‘Hawaii’ OR state = ‘Wisconsin’
GP: SELECT email address FROM professionals JOIN locations ON professionals.professional id =
locations.professional id WHERE state = ‘Hawaii’ OR state = ‘Wisconsin’;

✓ ✗ 32.5%

9 Incorrect ta-
ble

NL: How many different degrees are offered?
GT: SELECT count(DISTINCT degree summary name) FROM Degree Programs
ZS: SELECT COUNT(DISTINCT degree summary name) FROM Degree Programs
GP: SELECT count(DISTINCT degree program id) FROM Student Enrolment

✓ ✗ 30%

10 Logically in-
correct

NL: How many different series and contents are listed in the TV Channel table?
GT: SELECT count(DISTINCT series name), count(DISTINCT content) FROM TV Channel
ZS: SELECT COUNT(DISTINCT series name) AS series name, COUNT(DISTINCT Content) AS Content
FROM TV Channel
GP: SELECT count(DISTINCT series name) + count(DISTINCT content) FROM TV Channel

✓ ✗ 37.5%

Table 6: Qualitative analysis. NL:Natural Language, GT: Ground Truth, ZS: Zero-Shot, ✓indicates
the query is correct and ✗indicates the query is incorrect. % of sampled 40 queries under each case

6). While the fourth category is ‘Logically Incorrect’ queries. An instance is shown in example 10
where ‘AVG’ function is used unnecessarily.

As part of the analysis for the third case, we observe that the queries broadly belong to three categories.
The first one being ‘Over-complicated’, where an unnecessary JOIN is used in the GP generated query
(example 8). The second category where incorrect tables are used in the GP generated query (example
9) and the third category is where the GP generated query is logically incorrect. For instance, in
example 10 addition ‘+’ operator is used which is not correct.

7 CONCLUSION

Semantic parsing of Text-to-SQL in a cross-domain setting poses a challenging problem due to a
lack of availability of Text-SQL pairs in the new domain with unseen compositions. In this paper,
we leverage the pre-trained Codex model in zero-shot and few-shot settings. As opposed to prior
approaches which rely on inference-time retrieval of exemplars, we devise an algorithm which
constructs a well-curated Prompt, which we term as the Generic Prompt as it acts as a common
prompt across every test sample obviating the need for dynamic exemplar retrieval. Our novel
algorithm performs offline retrieval to obtain a set of exemplars based on complete coverage of the
SQL operators, clauses and functions and maximal coverage of databases to form the GP. Experiments
demonstrate that the GP achieves state-of-the-art results on three distinct cross-domain datasets,
surpassing the prior zero-shot and few-shot approaches and yielding performance comparable with
supervised approaches.

8

Published as a conference paper at ICLR 2023

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. ArXiv, abs/2108.07732, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020a.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021a. URL https://arxiv.org/abs/2107.
03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harrison
Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, S. Arun
Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. ArXiv, abs/2107.03374, 2021b.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Andrew Drozdov, Nathanael Scharli, Ekin Akyuurek, Nathan Scales, Xinying Song, Xinyun Chen,
Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large language models.
ArXiv, abs/2209.15003, 2022.

Yujian Gan, Xinyun Chen, Qiuping Huang, and Matthew Purver. Measuring and improving composi-
tional generalization in text-to-sql via component alignment. arXiv preprint arXiv:2205.02054,
2022.

Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, and Aaron C. Courville. On the
compositional generalization gap of in-context learning. ArXiv, abs/2211.08473, 2022.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
2022.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer.
Learning a neural semantic parser from user feedback. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 963–973, Vancouver,

9

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Published as a conference paper at ICLR 2023

Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1089. URL
https://aclanthology.org/P17-1089.

Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan, Suresh Parthasarathy,
Sriram K. Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis.
2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE), pp. 1219–1231,
2021.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. KaggleDBQA: Realistic evaluation
of text-to-SQL parsers. In Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 2261–2273, Online, August 2021a. Association for Computational
Linguistics. URL https://aclanthology.org/2021.acl-long.176.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. KaggleDBQA: Realistic eval-
uation of text-to-SQL parsers. In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 2261–2273, Online, August 2021b. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.176. URL https:
//aclanthology.org/2021.acl-long.176.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. Kaggledbqa: Realistic evaluation of
text-to-sql parsers. arXiv preprint arXiv:2106.11455, 2021c.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. 2022.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. ArXiv,
abs/2201.11227, 2022a.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. arXiv
preprint arXiv:2201.11227, 2022b.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Yu Cheng, Chenghu Zhou, Xinbing Wang,
Quanshi Zhang, and Zhouhan Lin. Rasat: Integrating relational structures into pretrained seq2seq
model for text-to-sql. ArXiv, abs/2205.06983, 2022.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi, Jonathan Herzig, Emily Pitler, Fei Sha, and
Kristina Toutanova. Evaluating the impact of model scale for compositional generalization in
semantic parsing. ArXiv, abs/2205.12253, 2022.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models. ArXiv, abs/2204.00498, 2022a.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models. arXiv preprint arXiv:2204.00498, 2022b.

Adam Roberts, Colin Raffel, Katherine Lee, Michael Matena, Noam Shazeer, Peter J. Liu, Sharan
Narang, Wei Li, and Yanqi Zhou. Exploring the limits of transfer learning with a unified text-to-text
transformer. Technical report, Google, 2019.

Ohad Rubin and Jonathan Berant. Smbop: Semi-autoregressive bottom-up semantic parsing. arXiv
preprint arXiv:2010.12412, 2020.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally for
constrained auto-regressive decoding from language models. arXiv preprint arXiv:2109.05093,
2021.

Richard Shin and Benjamin Van Durme. Few-shot semantic parsing with language models trained on
code. ArXiv, abs/2112.08696, 2021.

10

https://aclanthology.org/P17-1089
https://aclanthology.org/2021.acl-long.176
https://aclanthology.org/2021.acl-long.176
https://aclanthology.org/2021.acl-long.176

Published as a conference paper at ICLR 2023

Richard Shin, C. H. Lin, Sam Thomson, Charles C. Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jas’ Eisner, and Benjamin Van Durme. Constrained language
models yield few-shot semantic parsers. ArXiv, abs/2104.08768, 2021.

Lappoon R. Tang and Raymond J. Mooney. Using multiple clause constructors in inductive logic
programming for semantic parsing. In European Conference on Machine Learning, 2001.

Jingfeng Yang, Haoming Jiang, Qingyu Yin, Danqing Zhang, Bing Yin, and Diyi Yang. SEQZERO:
Few-shot compositional semantic parsing with sequential prompts and zero-shot models. In
Findings of the Association for Computational Linguistics: NAACL 2022, pp. 49–60, Seattle,
United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
findings-naacl.5. URL https://aclanthology.org/2022.findings-naacl.5.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018a.

Tao Yu, Rui Zhang, Kai-Chou Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Z
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
Conference on Empirical Methods in Natural Language Processing, 2018b.

John M. Zelle and Raymond J. Mooney. Learning to parse database queries using inductive logic
programming. In AAAI/IAAI, Vol. 2, 1996.

11

https://aclanthology.org/2022.findings-naacl.5

	Introduction
	Related Work
	Dataset
	Approach
	Results and Discussion
	Qualitative Analysis
	Conclusion

