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ABSTRACT

Code understanding and generation require learning the mapping between human
and programming languages. As human and programming languages are different
in vocabulary, semantic, and, syntax, it is challenging for an autoregressive model
to generate a sequence of tokens that is both semantically (i.e., carry the right
meaning) and syntactically correct (i.e., in the right sequence order). Inspired
by this, we propose a prefix-based learning framework to lessen the burden of
an autoregressive generation model by decoupling the learning of semantic and
syntactic dependencies. In particular, during the training we prepend the target
output with a semantic embedding that encodes the output sequence. In this
way, a model learns to first predict the semantics of the output before generating
the sequence. Evaluating on 11 code understanding and generation datasets, we
show that our prefix-prepending approach improves the baseline by an average
of 8.1% in exact match and 5.5% in CodeBLEU. It also either outperforms or is
on-par with the state-of-the-art methods across a variety of code understanding
tasks. Our approach is general and can be used as a meta algorithm on top of any
autoregressive language model.

1 INTRODUCTION

Pre-trained models such as GPT Brown et al. (2020) and BART Lewis et al. (2020) have empowered
various natural language processing applications and brought them closer to a level that is practically
applicable to real-world tasks. In the domain of software development, such models bring brand-new
developer experiences: code generation conditioned on natural language prompts can save thousands
of engineering hours; code translation methods can effectively scale current solutions and improve
interoperability; and code summarization methods can be used for educational purposes, for managing
large code bases and a plethora of other tasks.

While the state-of-the-art methods have shown their potential in understanding programming lan-
guages, they still have difficulty to provide production-level code. A recent study Mukherjee et al.
(2021) shows that state-of-the-art models, such as Codex Chen et al. (2021a), cannot generate few
lines of code that successfully pass code tests more than 50% of time. This induces the need to better
understand and model the semantic gaps between human and programming languages. As shown in
the example in Figure 1, code text has variable and function names (e.g., “tol” and “abs”) that are
out of the context of the whole code block and the natural language prompt, which makes generation
of such tokens especially difficult.

Recent state-of-the-art methods Chen et al. (2021b); Mukherjee et al. (2021) leverage a two-stage
generation process to remedy the issue by first predicting semantic attributes in the target code (e.g.,
type of value of an argument) and then generating the full code conditioned on the output of the
first stage. The hierarchical approach helps the model break down the problem into manageable
components, but it breaks the end-to-end behavior and requires designing a task dependent two-step
procedure.

To naturally ingest semantic information into an end-to-end code generation framework, we introduce
a semantic prefix that contains compressed encoding of the target code. Using the prefix, we
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achieve the aforementioned two-stage prediction in a single run of an encoder-decoder model by
re-designing the model to predict the prefix as the first token in the sequence, along with the target.
In our implementation, the semantic prefix is a high-level target code embedding, i.e., a summary
representation, prepended to the target sequence. During inference, due to the autoregressive structure
of the decoder, the model generates the prefix token first and predicts future tokens conditional on the
generated prefix.

We also show that by leveraging a clustering model to group prefix tokens, we can increase the model
accuracy through encouraging predictions of the model to be consistent on neighboring examples,
Miyato et al. (2019); Wei et al. (2021).

In summary, we make the following contributions:

• We propose a novel prefix conditioning framework that leverages summary representations
in code generation, translation, and summarization tasks. The prefix acts as an intermediary
prediction step, that forces the model to approach the generation problem hierarchically.
Particularly, our technique is not limited to the domain of code understanding, and can be
applied to any type of autoregressive generation model.

• In order to improve the reliability of our approach, we build a clustering-based mechanism
that forces consistency regularization on the model, and reduces the number of trainable
parameters. Our technique only requires a minor change to the training procedure; it can be
implemented with a few lines of code to any decoder based solution, and has no significant
impact on training or inference latency.

• Experimental results show that our model improves the state-of-the-art results by an average
of 1.42 CodeBLEU on three code generation datasets and by an average of 0.28 CodeBLEU
on two code translation datasets. Further, the model achieves the best performance when
summarizing JavaScript and Go, and is competitive for Ruby, Python and Java. Finally,
when compared to baselines that has an identical architecture as ours, sans the prefix, our
model significantly outperforms the baseline in all tasks by an average 8.1%, 5.6%, and
5.5% for EM, BLEU, and CodeBLEU scores, respectively.

2 RELATED WORK

Code generation. Automatically generating code and their comments has been attractive area for
research in the last few years. Earlier efforts focus on code generation and rely on rules to ensure
compilability Aho & Johnson (1976); Aho et al. (1989); Domínguez et al. (2012). More recently,
optimization-based models have achieved remarkable success to generate code by leveraging abstract
syntax tree (AST) Maddison & Tarlow (2014); Yin & Neubig (2017); Murali et al. (2018); Alon et al.
(2020); Peng et al. (2021); Kim et al. (2021); Mukherjee et al. (2021); Guo et al. (2021). Another
line of works assume that models would learn the structure from large open-source code repositories
and therefore relax modeling the AST. These works treat code as natural language and directly
adopt language models to encode and generate code Clement et al. (2020); Ahmad et al. (2020);
Svyatkovskiy et al. (2020); Perez et al. (2021); Shi et al. (2021); Parvez et al. (2021). Recently,
billion-parameter transformer models such as Codex Chen et al. (2021a) and AlphaCode Li et al.
(2022) report code generation applications for game building and competitive programming.

Prefix modeling for language generation. Sequence-to-sequence (Seq2seq) models Sutskever
et al. (2014) have shown a great potential in language generation tasks, and can be enhanced by
incorporating keywords extraction to generate informative outputs and avoid generic responses Hua
& Wang (2018); Cho et al. (2019); Li et al. (2020); Wang et al. (2020); Hua & Wang (2020); Narayan
et al. (2021). Shen et al. (2019) propose an E-M framework that predicts a multinomial latent variable
before generating the target sequence, which can be seen as an early exploration of utilizing a prefix
during the prediction process. In their work, the latent variable is mainly used for generating diverse
hypotheses rather than connecting the input and the output. On a different track, various works
improve Seq2seq models with the help of textual prompts Brown et al. (2020); Raffel et al. (2020);
Sun & Lai (2020); Schick & Schütze (2021) by attaching task-specific prompts to input sequences.
Prompt-based learning is mainly designed to be a lightweight alternative to fine-tuning, so in training
only a small part of parameters are updated. The most relevant prompting research to ours are
Ben-David et al. (2021) and Gu et al. (2021) who construct context-aware prompt, and Li & Liang
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Figure 1: We demonstrate a standard encoder-decoder structure for code generation along with our
proposed solution that leverages the semantic prefix, where the generated summary representation is
prepended to the target code. The prefix embedding is obtained from the target sequence in training
and predicted by the model during inference.

(2021) who propose to prepend prompt to the decoder. To the best of our knowledge, our work is the
first one to utilize prefix augmentation in program understanding tasks.

3 MODEL

We consider a conditional generation task with two sequences of tokens, input context x and the target
y. We aim to model p(y|x) in code understanding scenarios, which relates to three tasks: text-to-code
generation, code-to-text generation, and code-to-code translation.

3.1 GENERATION VIA ENCODER-DECODER ARCHITECTURE

A great number of language generation models adopt the encoder-decoder architecture Sutskever
et al. (2014) to model p(y|x), where x is encoded by the bidirectional Transformer Vaswani et al.
(2017), and the decoder predicts y autoregressively conditioned on the encoded x and its left context.
Following this track, we use BART Lewis et al. (2020) as the backbone structure in our main
experiments. During pre-training, the model learns to recover the input text that is corrupted by some
noising function, which is typically referred as denoising pre-training and shown to be quite effective
in a broad set of generation tasks. We set corruption rate to be 35%, and use three noising strategies:
token masking, token deletion, and token infilling. Specifically, we mask or delete a random token
in masking and deletion, and replace a span of text with a single mask token in infilling. After
pre-training on large-scale unlabeled programming language dataset containing various functions,
we fine-tune the model on code and text pairs. Both pre-training and fine-tuning objectives can be
written as maxθ

∑N
n=1 log pθ(yn|xn), where θ contains the model parameters and (xn, yn) is the

n-th sample among the N many samples in the dataset. In the rest of the text, we use p(·) to denote
pθ(·) when there is no ambiguity.

3.2 FORCING HIERARCHICAL THINKING THROUGH PREFIX PREPENDING

Recent work in code generation has shown that two-step methods, that address the problem hierarchi-
cally by building macro level blocks (e.g., function declarations) first and details of the blocks (e.g.,
code for the function) later, significantly increase model accuracy – in some cases by over-performing
models that are two orders of magnitude larger Mukherjee et al. (2021).

We propose to approximate the same procedure in our encoder-decoder setting by generating a sum-
mary representation, sn, before predicting the target tokens yn. The summary representation provides
semantic context to the other tokens during the rest of the generation: The standard autoregressive
decoder only makes prediction based on one side of the context, and is limited in its understanding of
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Algorithm 1: MLE training for semantic prefix modeling
Input :Dataset (xn, yn), n = 1, 2, ..., N ,

A separate pre-trained text encoder, ENCODER (e.g., CodeBERT)
Output :Trained model parameters

1 Obtain embeddings for the target sequence: s̃n = ENCODER(yn) for n = 1, . . . , N .
2 Use K-means on s̃n to obtain centroid representations for s̃n, i.e., hn =

∑
k=cn

s̄k where s̄k is
the centroid for cluster k and cn is the cluster id for s̃n: H = KMEANS(s̃1, . . . , s̃N ).

3 Prepend semantic prefix to the target yn: zn = [sn, yn].
4 Train the model by maximizing: maxθ

∑
n log p(zn|xn).

Algorithm 2: EM training for semantic prefix modeling
Input :Inputs and Models of Algorithm 1
Output :Trained model parameters

1 foreach epoch do
2 E-step: Obtain s̃n,epoch by running a forward pass and perform clustering:
3 s̃n,epoch = forward(xn)
4 Hepoch = KMEANS(s̃1,epoch, . . . ).
5 Prepend semantic prefix to the targets: zn,epoch = [sn,epoch, yn].
6 M-step: Optimize over θ to maximize

∑
n log pθ(zn,epoch|xn).

7 end

future context. Adding semantic prefix ensures that, at each time step the decoder accesses not only
the previous tokens but also crucial information about relevant future tokens. This approach helps the
model breakdown the problem into two manageable components. Accordingly, we write down the new
training objective: maxθ

∑N
n=1 log p([sn; yn]|xn) = maxθ

∑N
n=1 log p(yn|xn, sn) + log p(sn|xn).

3.3 PREPENDING SEMANTIC PREFIX TO TARGET SEQUENCE

We employ a separate encoder (built for code and text summarization) to produce semantic prefix
– a vector representation of the target sequence. The single prefix token captures the high-level
information in the target sequence.

However, it is not reasonable to expect the decoder to be able to correctly predict the semantic
prefix, as this would effectively require accurately solving both the code generation and the code
summarization problem in the decoder. Setting more reasonable expectations on the model, we use
an approximate proxy for the prefix embedding, where we cluster the summary representations of
training samples via K-means, and use the cluster centroids as the semantic prefix. Overall, each
target sequence is thus linked to a cluster, and the corresponding cluster centroid embedding is
prepended to the target sequence in the embedding space. We train the model by maximizing the
log-likelihood over the new (prefixed) target sequence. The procedure increases model consistency
as samples in the same cluster are now forced to have the same prediction in the first generated token
– a property known to reduce model generalization error Wei et al. (2021). The learning procedure is
provided in Algorithm 1.

In the above training process, we allow the model to train and update the prefix parameters, but the
cluster assignment for each sample stays the same, which results in additional variance in training.
More precisely, the cluster assignments are determined before training (based on the initialization
of the semantic prefixes), but the cluster assignments may change after the prefix embeddings are
updated during training. To fix this issue, we design an EM-style training algorithm Dempster et al.
(1977) to update cluster assignments after each epoch of training. Details are provided in Algorithm
2. Between each epoch, we update the prefix embeddings for each sample, and re-run the clustering
algorithm to obtain new cluster assignments and centroids.

The combination of Algorithm 1 and Algorithm 2 composes our final solution. We find that running
Algorithm 1 for several epochs without the EM step as a warm-up is effective at avoiding overfitting
and local minima. Although generating prefix requires additional compute, the cost is minor in
training. The additional steps require either filtering terms by regular expressions or running K-means.
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Methods EM BLEU CodeBLEU

Seq2Seq 3.05 21.31 26.39
Guo et al. (2019) 10.05 24.40 29.46
Iyer et al. (2019) 12.20 26.60 -
GPT-2 17.35 25.37 26.69
CodeGPT-2 18.25 28.69 32.71
CodeGPT-adapted 20.10 32.79 25.98
PLBART 18.75 36.69 38.52
CodeT5-small 21.55 38.13 41.49
CodeT5-base 22.30 40.73 43.20
UniXcoder w/o comment 21.45 37.15 -
UniXcoder 22.60 38.23 -

Ours 21.97 38.32 44.21

Table 1: Results of code generation task on CONCODE dataset.

In our experiments, the proposed method only runs 10% slower than the baseline model that has an
identical architecture as ours, sans the prefix. The number could be further reduced by using more
efficient K-means solutions.

Inference. During inference, our model works in the same manner as a standard autoregressive
language model. The decoder generates the target sequence step by step, by first predicting a summary
token and then target code tokens. This differs from the step in training, where the prefix needs to
be obtained through regular expression matches or by using a separate text encoder and running
K-means.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We work with the CONCODE Iyer et al. (2018) dataset to evaluate our model on the text-to-code
task (i.e., code generation). For the code-to-text task (i.e., code summarization) and code-to-code
task (i.e., code translation) we use the CodeXGLUE Lu et al. (2021) dataset. Statistics about the
datasets can be found in the Appendix A. In all experiments, we adopt exact match (EM), BLEU
Papineni et al. (2002), and CodeBLEU Ren et al. (2020) as our evaluation metrics. Different from
BLEU, CodeBLEU considers grammatical and logical correctness based on the abstract syntax tree
and the data-flow structure; therefore we regard EM and CodeBLEU as the main evaluation metrics
in tasks where the target is programming language, and report BLEU to make the reported numbers
comparable with the existing literature. We compare our model with state-of-the-art models and
obtain metrics for them from the respective papers. In the main experiments, we build our prefix
component on top of the official PLBART implementation Ahmad et al. (2021) by using the Fairseq
library Ott et al. (2019) (see Appendix C for detailed model structure). By comparing our model with
the PLBART, we demonstrate the performance gain on various tasks by adding the semantic prefix.
To build prefix, we employ CodeBERT Feng et al. (2020) to obtain summary representations of the
targets and K-means Lloyd (1982) to perform clustering. Number of clusters is set to be 8 based on
the elbow method Thorndike (1953). In evaluation, we remove the predicted prefix tokens and only
evaluate on the predicted code sequence.

4.2 CODE GENERATION

Table 1 shows the results for the code generation experiment on the CONCODE dataset. Our model
achieves the best CodeBLUE score. Specifically, by increasing the model parameter count only by
0.004%, our model outperforms PLBART by 17.1% in terms of EM, 4.4% in terms of BLEU, and
14.7% in terms of CodeBLEU. This demonstrates the performance gain by adding the semantic prefix,
as our model and PLBART share the same model architecture and training set except the usage of
prefix.
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Methods Ruby Javascript Go Python Java PHP
Seq2Seq 9.64 10.21 13.98 15.93 15.09 21.08
Transformer 11.18 11.59 16.38 15.81 16.26 22.12
RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02
CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16
PLBART 14.11 15.56 18.91 19.30 18.45 23.58
CodeT5-small 14.87 15.32 19.25 20.04 19.92 25.46
CodeT5-base 15.24 16.16 19.56 20.01 20.31 26.03
UniXcoder w/o comment 14.25 15.50 18.80 18.83 20.25 26.17
UniXcoder 14.87 15.85 19.07 19.13 20.31 26.54
Ours 14.54 16.74 19.61 19.43 19.50 24.07

Table 2: Results of source code summarization on CodeXGLUE dataset, evaluated with smoothed
BLEU-4 score.

Methods Java to C# C# to Java
BLEU EM CodeBLEU BLEU EM CodeBLEU

Naive Copy 18.54 0 34.20 18.69 0 43.04
PBSMT 43.53 12.50 42.71 40.06 16.10 43.48
Transformer 55.84 33.00 63.74 50.47 37.90 61.59
RoBERTa (code) 77.46 56.10 83.07 71.99 57.90 80.18
CodeBERT 79.92 59.00 85.10 72.14 58.80 79.41
GraphCodeBERT 80.58 59.40 - 72.64 58.80 -
PLBART 82.75 64.60 86.60 78.27 63.90 83.61
CodeT5-small 82.98 64.10 - 79.10 65.60 -
CodeT5-base 84.03 65.90 - 79.87 66.90 -
Ours 82.54 65.10 86.91 78.25 65.70 83.86

Table 3: Results of code translation task on CodeXGLUE dataset. Note that the PLBART results are
slightly different from what Ahmad et al. reported in the paper due to using different checkpoints.

Our model performs slightly worse than CodeT5-base Wang et al. (2021) in terms of EM and BLEU
and UniXcoder Guo et al. (2022) in terms of EM. The main reasons may be two-fold. Firstly, the
gap may come from different pre-training datasets. UniXcoder includes 2.3M functions paired with
comments from CodeSearchNet dataset Husain et al. (2019) in pre-training. PLBART shows that
adding CodeSearchNet data to the pre-training stage improves the model performance by 4% on
Python code generation task, so we argue that the gap between our model and the UniXcoder can be
filled by incorporating the additional training data. Secondly, the gap is related to the model sizes.
CodeT5-base uses a 12-layer encoder-decoder model, whose model size is 1.57 times larger than our
model (220M vs. 140M). Likewise, when we compare with CodeT5-small (60M), a smaller version
of CodeT5, our model outperforms it on all evaluation metrics.

4.3 CODE SUMMARIZATION

Different from code generation, summarization is a code-to-text task, which targets at translating
source code to natural language. We benchmark our performance against PLBART and the state-
of-the-art models in six programming languages on CodeXGLUE code-to-text dataset in Table 2.
Our model outperforms all the comparison methods in JavaScript and Go. When comparing against
PLBART, our model improves the result by an average of 0.66 BLEU. We also observe that our
model fails to further improve on PHP language. Following previous work Ahmad et al. (2021) we
hypothesize that there is a mismatch between the pre-trained languages (i.e., Python and Java) and
PHP, and therefore it restricts the performance. Excluding PHP, our model achieves the second-best
average BLEU over the rest 5 programming languages, and is only worse than CodeT5-base due to
the difference between model sizes.

4.4 CODE TRANSLATION

Table 3 presents the results of code translation task on CodeXGLUE code-to-code dataset. Our model
outperforms all the comparison methods in CodeBLEU and remains the second best in EM due to
different model size between our model and CodeT5-base. We highlight that our model performs

6



Published as a conference paper at ICLR 2023

better than PLBART on all three generation tasks discussed in this section by an average 8.1%, 5.6%
and 5.5% for EM, BLEU and CodeBLEU scores, respectively.

5 ANALYSIS

5.1 ABLATION STUDY

In order to breakdown the contributions of each factors in our solution, we conduct an ablation study
to evaluate the performance of different training strategies in Table 4. We observe that the model
without updating cluster assignment in training (i.e., removing Algorithm 2 from training) can still
outperform the PLBART model, implying that the performance boost does not purely come from
EM-style training. Further, in a complementary experiment, we see that the performance drops when
the model starts without a warm-up stage (i.e., removing Algorithm 1 from training). In these cases,
model becomes unsteady and gets stuck at local optima at the early stages of training, a common
issue with EM-style methods Murphy (2012). Model instability becomes even more severe when the
model is not initialized with a pre-trained model (e.g., CodeBERT). Finally, we observe significant
performance changes when the number of clusters are varied. We experiment with no clustering,
and with using 18 clusters (the number corresponds to the second-best elbow point). We see that
after increasing the number of clusters beyond a certain point, the model starts to overfit and fails at
generalization.

Deletion from
Algorithm CodeBLEU

Ours (semantic prefix) - 44.21
W/O updating prefix Algorithm 2 -1.34
W/O warmup Algorithm 1 -1.54
W/O CodeBERT Line 1 in Algo 1 -1.77
Number of clusters=18 - -1.17

W/O clustering Line 2 in Algo 1
& 4 in Algo 2 -2.55

Table 4: Ablation study results on CONCODE dataset. We present variations of our different training
algorithm by deleting certain lines of code from the Algorithm 1 and 2.

5.2 PLUGING PREFIX INTO VARIOUS ARCHITECTURES

In our previous experiments, we use BART as the base model and demonstrate performance gains
on various tasks by adding the prefix. In this section, we experiment with integrating our idea into
different architectures to show that our method can adapt to any type of autoregressive generation
model. We consider three code understanding models, CodeBERT, PLBART, and CodeT5, that
leverage three different architectures: RoBERTabase Liu et al. (2019), BARTbase Lewis et al. (2020),
and T5base Raffel et al. (2020). Adding a semantic prefix increases the model parameter count by
0.0035%, 0.0040%, and 0.0027% for the 3 models.

We present the experimental results in Table 5. The models which are equipped with the prefix
perform better than the vanilla versions on all tasks, except for the code-to-code task with PLBART.
The improvements are more significant on text-to-code task than the other two tasks. This observation
confirms the advantages of modeling a semantic prefix in a task where the input and output are
in different languages. Notably, our method is more beneficial when the prediction target is a
programming language. We hypothesize that the prefix provides summarization of both the semantic
and structured information of the target program. The semantic information is captured by encoding
using the summarization encoder, and the structured information is acquired through clustering.

5.3 COMPARISON TO PLANNING-BASED GENERATION WITH DISCRETE PREFIX

As discussed in previous work Hua & Wang (2020); Narayan et al. (2021), keywords in target
can be modeled as prefix to provide intermediate plan to ground the generation. This so-called
planning-based generation model learns to predict a summary plan in the form of a chain of keywords,
followed by the target sequence. Inspired by their work, in the code generation setting, we build a
different type of prefix – a sequence of keywords from target program, such as function and variable
names used in the function calls. That gives rise to the discrete prefix method. The discrete prefix
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Model Architecture Task BLEU EM CodeBLEU
w/o

prefix
w/

prefix
relative
change

w/o
prefix

w/
prefix

relative
change

w/o
prefix

w/
prefix

relative
change

CodeBERT RoBERTa-base
text-to-code 33.32 34.99 1.67 19.35 20.75 1.40 36.48 38.14 1.66
code-to-text 14.90 15.66 0.76 - - - - - -
code-to-code 79.92 80.71 0.78 59.00 61.43 2.43 85.10 85.32 0.22

PLBART BART-base
text-to-code 36.69 38.32 1.63 18.75 21.97 3.22 38.52 44.21 5.69
code-to-text 15.56 16.74 1.18 - - - - - -
code-to-code 82.75 82.54 -0.21 64.60 65.10 0.50 86.60 86.91 0.31

CodeT5 T5-base
text-to-code 40.73 40.78 0.05 22.30 22.55 0.25 43.20 44.13 0.93
code-to-text 16.16 16.68 0.52 - - - - - -
code-to-code 84.03 84.45 0.42 65.90 67.0 1.10 88.04 88.36 0.32

Table 5: Relative improvement scores with prefix integration for 3 model architectures and 3 code/text
generation tasks. For each task, we conduct experiment on one of the most representative datasets;
we use CONCODE, CodeXGLUE (JavaScript), and CodeXGLUE (Java-to-C#) for text-to-code,
code-to-text and code-to-code, respectively. In the code-to-text task, we report the Smoothed BLEU-4.

Methods JuICe CodeXGLUE CONCODE

w/o prefix 41.61 14.39 38.52

w/ discrete prefix 41.67 21.12 41.36
w/ proposed prefix 43.23 21.78 44.21

Table 6: CodeBLEU of applying planning-based generation model (i.e., w/ discrete prefix) and our
proposed method (i.e., w/ semantic prefix) on 3 code generation datasets.

approach enables us to control the content in the prefix by manually selecting the summary-worthy
tokens and prepending them to the target sequence.

Specifically, our discrete prefix learning framework consists of three steps: (i) we use regular
expression to extract function names and arguments from the target code; (ii) we prepend the target
code yn with the tokens for the extracted sequences, sn, forming zn = [sn, yn]; (iii) we train the
model over the new target zn. Take the prompt-code pair in Figure 1 as an example – we obtain
three discrete tokens “is_equal”, “tol”, and “abs” which capture high-level details of the target code
whose purpose is to check equality of two floating numbers. If the decoder successfully generates the
prefix, it acts as an effective guide as the model knows that it should be using the “abs” method and
the “tol” variable.

To compare discrete prefix with our proposed semantic prefix, we test both methods on 3 code gener-
ation datasets, JuICe Agashe et al. (2019), text-to-python dataset in CodeXGLUE, and CONCODE.
We observe that both discrete prefix and semantic prefix significantly outperform the baseline that
has an identical architecture, sans the prefix. This trend is consistent across all three datasets, which
confirms the advantage of modeling summary prefix, despite making prefix discrete or continuous.
Our proposed method is more advantageous than discrete prefix. The reasons may be two-fold.
Firstly, experimental results (see Appendix D) show that different selections of summary tokens have
a strong impact on the model performance. It is challenging to find the optimal discrete prefix, while
the semantic prefix is trained in training. Secondly, discrete tokens have less capacity and flexibility to
summarize training target. They are limited to be tokens extracted from the target sequence, and their
representations are limited to be in the decoder’s token space. We conclude that it is not necessary to
limit the prefix to human-interpretable natural language, as our goal is to have the model perform the
generation task with the help of prefix.

6 CONCLUSION

We propose a method to improve model accuracy in code understanding and generation tasks by
adding a semantic prefix to the target. During the training we prepend the target output with a
semantic embedding that encodes the output sequence. In this way, a model learns to first predict
the semantics of the output before generating the sequence. Evaluating on 11 code understanding
and generation datasets, we show that out prefix-prepending approach improves the baseline by an
average of 8.1% in exact match and 5.5% in CodeBLEU. It also either outperforms or is on-par with
the state-of-the-art methods across a variety of code understanding tasks. Our approach is general
and can be use as a meta algorithm on top of any autoregressive language model.
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A DATA STATISTICS

We present data statistics in Table 7.

B CONNECTIONS TO PROMPTING AND PREFIX-TUNING

Prepending a prefix is related to soft-prompting, which appends additional embeddings to the input
to improve model accuracy Li & Liang (2021). To be more precise, prompting appends context
meaningful tokens to the input text, to form new inputs [x; s]. The method relies on the fact that the
prompt lifts the scores of the more accurate outputs, i.e., over a high probability set of (x, y) pairs, its
holds that p(y|x, s) ≥ p(y|x).
In our setting, the first term in the objective function, log p(yn|xn, sn), optimizes the same likelihood
as soft-prompting. There is one major difference: sn in our setting represents a summary represen-
tation of the target and not input level deterministic tokens. The second term, log p(sn|xn), acts as
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Task Dataset Language Train Valid Test

Generation
JuICe NL to Python 38,971 827 894
CodeXGLUE NL to Python 251,820 13,914 14,918
CONCODE NL to Java 100,000 2,000 2,000

Summarization CodeXGLUE

Ruby 24,927 1,400 1,216
JavaScript 58,025 3,885 3,291
Go 167,288 7,325 8,122
Python 251,820 13,914 14,918
Java 164,923 5,183 10,955
PHP 241,241 12,982 14,014

Translation CodeXGLUE Java to C# 10,300 500 1000
C# to Java 10,300 500 1000

Table 7: Statistics of the datasets.

an additional regularizer that ensures the distribution of the prompts to be closely correlated with
the input xn. To conclude, at a high level, our method is an alternative to prompt tuning, where
we allow the model to treat prompts as distributions rather than deterministic tokens. We rely on a
regularization term that forces the model to build more input-predictable distributions for the prompts,
and thus provide stability in our (more) stochastic approach.

C ADDITIONAL DETAILS ON MODEL AND HYPERPARAMETERS

Training details. The model is pre-trained on a large-collection of Java (210M) and Python (470M)
functions and natural language descriptions (47M) from GitHub and StackOverflow. It adopts the
BARTbase Lewis et al. (2020) architecture, which uses 6 layers of Transformer with 768 dimensional
hidden states and 12 heads (∼140M parameters). It takes approximately 30 minutes to train a single
epoch on a dataset with 100,000 samples on 8 Tesla V100 GPUs.

Number of Clusters. The experimental results show that our approach is not sensitive to the number
of clusters. Only at large values (e.g., 18), the performance changes significantly due to model’s
overfitting. We see a variation of 0.2 in CodeBLEU for k in the range of 6-12, and we choose to set k
to 8 for all our experiments.

D DISCRETE PREFIX ANALYSIS

Length of the Discrete Prefix. Number of arguments varies in different datasets. For example, there
are an average of 7.3 arguments per sample in the JuIce dataset. Arguments and function names can
be mixed, however this requires working with a potentially very long prefix and detracts performance.
We experiment with various types of code tokens (Table 8) and their combinations and use argument
prefixes based on validation performance.

Study of Different Selections of Prefix Tokens. We provide a study of different selections of
discrete prefix tokens on JuICe in Table 8. In addition to using arguments, we also experiment with
adapting function names and plot types for prefix tokens. We extract function names by using regular
expression, and follow Chen Chen et al. (2021b) to identify plot types by using a predefined mapping
(e.g., “scatter()” corresponds to scatter plot). The best EM and CodeBLEU scores are achieved
by using arguments and plot types, respectively. The result of using function names shows that the
inappropriate selection of discrete prefix may lead to a performance drop.

We next experiment with extracting discrete prefixes from input sequences instead of target sequences.
This is ordinarily difficult because an input sequence usually does not contain code and is less
structured than the target. Fortunately, JuICe dataset contains both programming language in the
input and the output, so we can examine the effectiveness of adding informative input code tokens to
a target sequence. By doing so, we observe a performance boost in terms of EM and CodeBLUE
compared to the PLBART baseline. In this experiment, we also test with forcibly inserting correct
prefix tokens into prediction instead of predicting them, but do not observe a significant improvement.
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We argue that some tokens extracted from the input can be irrelevant to the target and thus confuse
the target prediction.

EM CodeBLEU

w/o prefix 4.91 41.61

Function names 4.65 40.29
Plot types 4.71 42.43

Arguments from target 5.17 41.67
Arguments from input 5.07 42.33

Table 8: Results of different selections of discrete prefix on JuICe dataset. “w/o prefix” model can be
seen as the baseline.
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