
ObSynth: An Interactive Synthesis System for
Generating Object Models from Natural Language

Specifications

Alex Gu gua@mit.edu
Tamara Mitrovska? tamaram@mit.edu
Daniela Velez? dvelez@mit.edu
Jacob Andreas jda@mit.edu
Armando Solar-Lezama asolar@csail.mit.edu
Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

We introduce ObSynth, an interactive system leveraging the domain knowledge em-
bedded in large language models (LLMs) to help users design object models from high
level natural language prompts. This is an example of specification reification, the pro-
cess of taking a high-level, potentially vague specification and reifying it into a more
concrete form. We evaluate ObSynth via a user study, leading to three key findings:
first, object models designed using ObSynth are more detailed, showing that it often
synthesizes fields users might have otherwise omitted. Second, a majority of objects,
methods, and fields generated by ObSynth are kept by the user in the final object
model, highlighting the quality of generated components. Third, ObSynth altered the
workflow of participants: they focus on checking that synthesized components were
correct rather than generating them from scratch, though ObSynth did not reduce the
time participants took to generate object models.

1 Introduction

Recent years have seen several applications of large language models (LLMs) to support software
development. For example, GitHub’s Copilot has demonstrated the potential of LLMs to help
programmers during the development process, and AlphaCode (Li et al., 2022) has demonstrated
the possibility of solving programming competition problems using LLMs. However, both of these
systems focus on very local problems—writing the next few lines of code, or a single self-contained
algorithm. Creating software, however, requires much more than implementing functions from
well-defined specifications. In particular, an important part of software development is leveraging
domain knowledge to turn high-level application requirements into a detailed description of all
the components and interfaces that will make up the application.

We propose this specification reification task as a new challenge at the intersection of human-
computer interaction and program synthesis. Specification reification is the problem of taking a
high-level, potentially vague specification of a problem and reifying it into a more concrete form.
For example, consider a developer who is designing a classroom management application in an
object-oriented language. Existing program synthesis systems can implement specific functions

?Tamara Mitrovksa and Daniela Velez contributed equally and are ordered alphabetically by last name.

1

ar
X

iv
:2

21
0.

11
46

8v
1 

 [
cs

.S
E

] 
 2

0 
O

ct
 2

02
2



Figure 1: A sample object model for a restaurant management application, designed with the
help of ObSynth. ObSynth is our interactive tool for designing object models consisting of objects,
fields, types, and methods.

in this application—for example, a function to search for students who have not submitted an
assignment—but before a developer gets to that point, they first need to design the application
itself. This involves deciding which objects they need, and for each object deciding on their
fields and methods, and for each method deciding what its specification should be. Specification
reification is about deriving this design from the high-level description of the application. Because
of the vague nature of this task, it is important that systems addressing these tasks involve humans
in the loop.

In addition to introducing the new task, this paper presents ObSynth, a prototype interactive
system for specification reification. ObSynth focuses on a key sub-task of the full specification
reification problem: designing an object model that will make up an application from a natural
language specification alone. We define an object model to be a set of objects, fields, and methods.
Each field has a name and a type; types may be primitives (int, boolean, float, string, datetime),
other objects, or lists of either. In our model, each method simply has a name (though we hope
to extend this in future work). As an example, consider the specification “I want a restaurant
management app tracking customers, their reservations, their orders, and menu items.”. An example of
an object model created via interaction with ObSynth is shown in Fig. 1. In this example model,
the objects are named customer, reservation, order, menu item, menu. In Fig. 1, the customer object
has a field named address of type string and a field named reservation of type List[reservation], the
list type indicated by the many icon. In Fig. 1, two of the customer object’s methods are named
makeReservation and updateContactInfo.

The design of object models is challenging for a few reasons. First, the initial description is
not a complete specification for the object model, so relevant pieces of the object model must be
inferred. For example, in Fig. 1, the menu object is not specified in the prompt, nor is the cus-
tomer object’s phone number field or makeReservation method. The existence of these fields must be
inferred by the system from its background knowledge of objects in the world and their relevant
attributes. Second, the model must understand the relationship between objects, e.g., that a cus-
tomer has one name and a list of reservations but no price. Even with a sophisticated language
model, getting every detail right in one shot is challenging, so it is important for such a system
to be designed for interactivity. This way, the tool can enhance the user’s creativity rather than
attempting to substitute for it.

We present ObSynth, our synthesis-based interactive tool for solving this task. First, in Sec. 3,
we present the ObSynth UI, describing the workflow when interacting with our system. Next, in
Sec. 4, we discuss in depth how we use LLM’s to equip ObSynth with automation capabilities.

2



Finally, in Sec. 5, we discuss our user study, highlighting the ways ObSynth improves the process
of creating object models. Our contributions are as follows:

1. We introduce and highlight a new task in program synthesis: specification reification. We
also introduce the object model synthesis task as an important sub-problem of specification
reification.

2. We design an interactive system, ObSynth, that assists humans in completing this task by
automating parts of the process. Instead of designing the object model purely from scratch,
ObSynth synthesizes a set of initial object model that the user can then build off of. Users
can also ask ObSynth to automatically add relevant objects, methods, and fields at any point
in the design process.

3. We conduct a user study (n = 11) that helps us understand how ObSynth can help par-
ticipants design better object models. Through this user study, we discovered three key
findings. First, object models designed using ObSynth are more detailed, showing that it
often synthesizes fields users might have otherwise omitted. Second, a majority of objects,
methods, and fields generated by ObSynth were kept by the user in the final object model,
highlighting the quality of generated components. Third, ObSynth altered the workflow of
participants: they focus on checking that synthesized components were correct rather than
generating them from scratch. However, ObSynth did not reduce the time participants took
to generate object models.

2 Related Work

Program Synthesis: The field of program synthesis has had a long history, with a variety of ap-
proaches summarized by Gulwani et al. (2017). The first line of approaches to appear mostly
focused on inductive synthesis (matching a set of input-output examples) approaches such as
bottom-up search (Alur et al., 2015), top-down search (Feser et al., 2015), type-directed search (Os-
era and Zdancewic, 2015), and constraint-solving (Singh and Solar-Lezama, 2016). Later, however,
richer forms of program specifications were used for synthesis.

In recent years, with new developments in machine learning, there have been more and more
works exploring the potential of augmenting traditional synthesis techniques with neural net-
works; (Chaudhuri et al., 2021) provides a complete survey. These include approaches to learn
abstractions and libraries from scratch (Ellis et al., 2020; Wong et al., 2021; Nye et al., 2020b),
execution-guided approaches that evaluate partial program states (Nye et al., 2020a; Gupta et al.,
2020; Chen et al., 2018), and approaches guided by natural language information (Wong et al.,
2021; Ye et al., 2020b,a; Nye et al., 2019; Polosukhin and Skidanov, 2018).

Ontologies and Knowledge Graphs: There has also been a body of work that aims to build
ontologies and knowledge graphs of natural language concepts, such as Yago (Suchanek et al.,
2007), WordNet (Miller, 1995), and DBpedia (Auer et al., 2007). While these knowledge graphs
have been applied in traditional NLP tasks such as question answering (Boiński et al., 2020),
they are unable to provide specific insights for our synthesis task such as synthesizing fields for a
certain object. As an example, when searching for nearest neighbors related to student, WordNet
comes up with synonyms such as pupil, educatee, and scholar, while Yago provides a Wikipedia
page for a student, a definiton of a student in Spanish, and an image containing many students.
In addition, our synthesis task is very contextual: the fields of a student object would be very
different if we were designing an app for teachers to manage the classroom vs a social app for
students to make friends with one another. It is difficult to capture this form of context via
ontologies and knowledge graphs.

3



Large Language Models: Recent years has also seen the birth of new works leveraging large
language models (LLMs) like GPT-3 (Brown et al., 2020) to perform program synthesis. A few
months ago, GitHub released a powerful code autocompletion tool called GitHub Copilot which
uses context such as natural language comments and previous code in order to generate code.
Copilot is built off of OpenAI’s powerful machine learning model Codex (Chen et al., 2021),
which translates natural language to code in almost a dozen programming languages. CodeBERT
(Feng et al., 2020) learns representations of code and natural language for downstream tasks like
code search and code documentation generation. Heyman et al. (2021) use GPT-2 trained on a
corpus of well-documented and commented code to synthesize programs for data science and
machine learning. Building off of LLMs, Austin et al. (2021) incorporate human feedback to
repair generated code.

There have been other works combining traditional program synthesis techniques with large
language models. Verbruggen et al. (2021) uses traditional inductive synthesis techniques with
GPT-3 to learn small intermediate functions that cannot be represented symbolically. Jigsaw
(Jain et al., 2021) uses LLMs to synthesize code but use program analysis techniques to do post-
processing. Rahmani et al. (2021) take a component-based synthesis approach guided by LLMs
which, for example, help rank candidate programs. Our approach differs from existing works
in LLMs in that we approach synthesis from a global view, generating the overall structure of
applications rather than the local structure of code itself.

3 The ObSynth Frontend

In this section, we describe our vision of how users interact with ObSynth to generate a final
specification from a text prompt. Fig. 2 shows the steps of the ObSynth workflow at a high level,
while Fig. 3 shows the concrete UI users work with at each step. In Sec. 3.1, we explain steps
(1)-(4), where the user specifies an initial text prompt and works with ObSynth to obtain an initial
full object model. Then, in Sec. 3.2, we explain step (5), where users use ObSynth to tweak this
object model to fit their use case.

3.1 From Text to Initial Object Model

The user starts by specifying a text prompt as shown in Fig. 3, step (1). As a running example,
we use the prompt “I want a restaurant management app tracking customers, their reservations, their
orders, and menu items.” When the user enters this prompt, ObSynth synthesizes a list of object
names without fields or methods—in this case customer, reservation, order, menu item, table, waiter,
as shown in Fig. 3, step (2). The user can then add, edit, or delete these object names in the same
UI. ObSynth also provides an additional functionality, which will attempt to synthesize additional
relevant objects (the purple Auto Add Object button). This feature could potentially suggest objects
that the user may not have thought of themselves. After specifying a list of object names, ObSynth
will automatically synthesize a set of fields, types, and method names for each object, as seen in
step (4). This generates an initial object model specification for the text prompt.

3.2 From Initial Object Model to Final Specification

Since different users may have different use cases, ObSynth gives users the flexibility to edit the
object model as desired. After generating a full object model, users see the UI shown in the bottom
panel of Fig. 3. We first explain the UI features (grey buttons), and then move to the synthesis
features (blue buttons).

4



Figure 2: Complete workflow of a user synthesizing an object model from a text specification
using ObSynth. Orange indicates user interaction, blue indicates ObSynth automation.

ObSynth UI features: As shown in Fig. 3, ObSynth’s UI allows users to easily add, delete, and
edit their own objects, fields, and methods at all stages of the process. Deleted objects, fields, and
methods can also be restored. Users can easily toggle the multiplicity of an object field by clicking
the one/many button. ObSynth also has a one-way/two-way button that adds reverse object-field
relationships: if a student object has a teacher field and there is a teacher object, the button will
toggle whether the teacher object has a student field. Finally, ObSynth ensures that when the
user changes the name of an object, all other fields having that object type are renamed. All these
buttons are shown in grey in Fig. 3.

ObSynth synthesis features: However, what makes ObSynth unique is its synthesis capabilities,
shown in the blue buttons in Fig. 3. When the user clicks Begin, a set of initial object names is
automatically synthesized for them. When the user clicks Generate Fields and Methods, fields and
methods for each object are likewise automatically populated. The blue Auto Add buttons allow
users to synthesize specific parts of the object model: Auto Add Field synthesizes a new field, type,
and multiplicity for the current object. Auto Add Method synthesizes a new method name for an
existing object. Auto Add Object synthesizes a new relevant object and fully populates it with
fields (including types and multiplicity) and method names. These synthesis tools ease the user
in the development of a suitable object model for their use case, especially giving the user ideas
for objects, fields, and methods they might have overlooked.

4 The ObSynth Backend

In Sec. 3, we described the frontend of ObSynth and how users can interact with the synthesis
features of ObSynth to design an object model. In this section, we go into the precise technical
details of how these synthesis components work.

5



Step (1)

Step (2), Step (3)

Step (4), Step (5)

Figure 3: Full ObSynth UI. In step (1), the user specifies a prompt. In step (2), ObSynth auto-
matically generates a few object names, and in step (3) the user can freely edit these with the
potential help of the Auto Add Object synthesis feature. Next, in step (4), ObSynth synthesizes
fields, types, multiplicities, and methods for each specified object (full model not shown due to
space). Finally, in step (5), the user can edit the synthesized model (with automated synthesis
features) to generate a desired final object model.

6



4.1 Large Language Models and GPT-3 Prompt Engineering

In recent years, large language models (LLMs) trained on enormous amounts of data have shown
new capabilities on natural language tasks. One such model is GPT-3, which is a 175B parameter
model trained on about 45 TB of data. Synthesizing object models require external knowledge
beyond the initial text specification. Because GPT-3 has knowledge of the real world, we leverage
this knowledge via a method known as prompt engineering.

The premise of prompt engineering is that by specifying examples of a task we wish GPT-
3 to perform, it can learn to perform the task in a few-shot manner. For example, one task is
to synthesize initial object names from a specification. In this subtask, described at length in
Sec. 4.3, we give it an example of a classroom management application with initial object names
synthesized and ask it to do the same task for other applications. This is the main technique that
powers ObSynth’s synthesis functionality.

ObSynth uses the GPT-3 Q&A API with the text-davinci-001 model and default parameters
from the OpenAI web API1: a temperature of 0 (greedy decoding), frequency penalty of 0, and
presence penalty of 0.

4.2 Individual Prompt-Engineering Subtasks

ObSynth has a few automation components to aid the user at each step of the design process,
namely:

(T1) Synthesizing object names from an initial natural language specification (Fig. 2, Step 2)

(T2) Synthesizing more object names given a set of existing object names (Step 3)

(T3) Synthesizing a full object model from a set of object names (Step 4)

(T4) Synthesizing more objects, fields, and method names in an existing object model (Step 5)

We further break down tasks (T1)-(T4) into eight individual subtasks, each of which can be
solved with a single GPT-3 prompt. In Table 1, we describe the individual subtasks, along with
the inputs and outputs we use to solve them. Since GPT-3 is a text-to-text system, we must
convert back and forth between our structured object model representation and descriptive text
representations. For example, in (ST1), GPT-3 gives us outputs of the form “It has the following
tables: student, assignment, teacher.”, but we must parse this to understand that this represents three
object names: student, assignment, and teacher. In (ST2), we feed GPT-3 our object model’s name
descriptively: “The app has the following tables: student, submission, assignment, teacher.”. We defer
the presentation of an end-to-end description of a subtasks in Sec. 4.3.

Mapping UI buttons to tasks, the initial [Begin] button corresponds to (T1), the [Auto Add
Object] button in the initial phase corresponds to (T2), the [Generate Objects, Methods, and Fields]
button corresponds to (T3), and the [Auto Add Object/Method/Field] buttons correspond to (T4).
Each of these buttons is a combination of several subtasks, as shown in Table 2.

4.3 End-to-end Pipeline of a Subtask

In this section, we give a complete description of the prompt engineering approach used to per-
form (ST1). As other tasks are similar, we defer the methodology behind the rest of the subtasks
to the supplementary material. (ST1) is the first automation component of ObSynth, generating
initial objects from a high-level specification. Once again, we consider the restaurant management
application. The interaction between the frontend and backend is shown in Fig. 4. The prompt we

1https://beta.openai.com/playground

7



Table 1: Complete list of subtasks used in designing the automation features of ObSynth. Each of
these subtasks requires real world knowledge and can be done via a single GPT-3 prompt.

Subtask Inputs Outputs
(ST1) synthesize initial object names prompt object names
(ST2) synthesize additional object names prompt, object names new object names
(ST3) synthesize field names prompt, object name field names
(ST4) predict the type of a field prompt, field name, all object names field type
(ST5) predict the multiplicity of a field prompt, object name, field name field multiplicity
(ST6) synthesize a set of method names prompt, object name, field names method names
(ST7) synthesize additional field names prompt, object name, field names new field names
(ST8) synthesize additional method names prompt, object name, field names, method names new method names

Table 2: Subtasks called for each of the automation buttons of ObSynth. These synthesis features
make ObSynth powerful, giving it the potential to synthesize objects, fields, and methods that the
user may not have considered including.

Button Subtasks Called
(T1) Begin (ST1)
(T2) Auto Add Object (before fields/methods) (ST2)
(T3) Generate Fields and Methods (ST3), (ST4), (ST5), (ST6)
(T4) Auto Add Object (after fields/methods) (ST2), (ST3), (ST4), (ST5), (ST6)
(T4) Auto Add Field (ST7), (ST4), (ST5)
(T4) Auto Add Method (ST8)

employ works as follows: first, we give GPT-3 a full example (primer) of how it should respond
for a classroom management application prompt. Then, we feed it the user-specified prompt (the
restaurant management application) and ask it to generate relevant tables. Fitting the format of
our primer, it responds with “A: It has the following tables: customer, reservation, order, menu item.”,
which we can parse to extract the object names. We then add those object names to the UI. Next,
in order to generate a larger set of object names, we query GPT-3 a second time, using the previ-
ous prompt, the previous answer, and the new question “Q: What other tables does this application
have?”. This gives us more object names, and again extract them to the UI. In (ST1), since users
are able to delete tables easily, we err on the side of overgeneration and show the user all tables
produced by the two queries.

5 User Study

We conducted a user study to test if ObSynth could help users build better object models. Specif-
ically, the goal of our user study was to answer the following four questions.

(Q1) Are object models produced with the help of ObSynth more detailed than those without?

(Q2) Are the fields and methods in initial object models produced by ObSynth better than those
without?

(Q3) Do people using ObSynth take less time to design object models?

(Q4) How does ObSynth shift the workflow of participants building object models?

8



Figure 4: Interaction between frontend UI and backend GPT-3 calls for (ST1), generating a set
of initial object names from a text prompt. We make use of GPT-3’s real world knowledge to
synthesize relevant object names.

5.1 User Study Design

In total, 11 participants participated in our study, 6 from academia and 5 from industry. All partic-
ipants were familiar with web development and object model design. We gave all participants the
same prompt: “I want a restaurant management app tracking customers, their reservations, their orders,
and menu items.” Participants were split into two groups: a control group and an ObSynth group.
In both groups, participants were given the same high-level instructions: to design an object model
for the restaurant management application with objects, fields, types, multiplicities, and method
names. In the ObSynth group, participants were shown and taught to use the ObSynth interface
(Fig. 3). In the control group, participants were shown and taught to use the same interface with
synthesis capabilities removed (Fig. 5). In order to better understand participant behavior, we kept
track of what buttons they pressed at each time step and how the object models evolved over time.
Finally, after submitting their final object models, for both groups, the participants were asked to
describe their experience interacting with the system and to explain their thought process while
designing the object models.

In Fig. 6, we show an example of object model produced by the ObSynth group (Fig. 6a) and
the control group (Fig. 6b). In the reminder of this section, we analyze the results of the user
study in depth from the perspective of our four research questions.

5.2 (Q1) Are object models produced with the help of ObSynth more detailed
than those without?

For both the control group and the ObSynth group, users were asked to edit the models until
they were satisfied that they were good models for the given prompt. However, this does not
necessarily mean that all models generated by either group are equally good. On the one hand,
some fields may be important for the task, but it may simply not occur to some users to include
them. On the other hand, it is well known that automation can lead some users to be complacent,
which in our case could mean blindly accepting the machine suggestions and losing initiative to
further develop the machine generated object models, documented in a different context in Levy
et al. (2021)). In either case, there is strong reason to believe that the main shortcoming of the

9



Figure 5: The UI for the control group, which is the same as the UI for ObSynth but with the
synthesis features (Auto Add buttons, Generate Fields and Methods) removed.

resulting models would be that they miss relevant fields, since a blatantly incorrect field would
call the user’s attention in a way that a missing field would not.

This assumption suggests that a way to evaluate the models produced by the system is to track
which object fields are present in object models generated with the help of ObSynth vs. which
are present in object models generated in the baseline setup. Fields that are present only rarely in
models in both cases can be regarded as idiosyncratic, but fields that are present consistently in the
control group but only rarely in the ObSynth object models would suggest a complacency effect.
These would be fields that unaided users consistently regarded as important, but that users of
ObSynth failed to consider. By contrast, fields that are present consistently in the ObSynth group
but only rarely in the control group are suggestive of fields that did not occur to the unaided
users, but the ObSynth users found them useful either after they were suggested by ObSynth, or
after thinking of them themselves inspired by the suggestions given by the tool.

In Fig. 7a we looked at each distinct object name across all object models and we counted the
number of times it occurred in models produced by the ObSynth group (x-axis) and the control
group (y-axis). We found that the majority of object names were in the top right and bottom left
corner, indicating that most objects occurred frequently in both groups or in neither group. The
most striking feature of the figure, however is the absence of objects in the upper left quadrant.
The pattern is even stronger in Fig. 7b, which involves a similar analysis but for field names. Once
again, there are no fields in the upper left quadrant, indicating that there are no fields that were
common in the control group but rare in the ObSynth group. By contrast, we can see a number of
fields in the lower-right quadrant, indicating that many fields that the ObSynth users consistently
kept as important were never added by the unaided users.

To better understand the objects in each of these different quadrants, we looked at the object
names themselves (Table 3). We found that two objects (waiter and table) were common among
ObSynth models but rare in the control group models. Both of these objects made sense in our
prompt’s context. In addition, the only object common among control group models but rare in
ObSynth models was menu, but even this object only showed up in 40% of control group models.

10



(a) Object model produced with the help of ObSynth

(b) Object model produced without ObSynth

Figure 6: Comparison of two final object models produced with (top) and without (bottom) Ob-
Synth for a restaurant management application. Observe that while both models adequately fit
the prompt, the ObSynth model contains many fields and methods omitted in the control group
model.

Table 3: Qualitative analysis of all distinct objects generated, grouped by how often they occur in
the ObSynth models and control group models for a restaurant management application. Note
that ObSynth models contain relevant objects (waiter, table) that control group models omit.

Category Frequencies (% ObSynth, % control)
high in both customer, reservation, order (100%,

100%); menu item (100%, 80%)
low in both chef, restaurant (17%, 0%); entree, indi-

vidual order, drink (0%, 20%)
high in ObSynth, low in control waiter (67%, 20%); table (83%, 20%)
low in ObSynth, mid in control menu (17%, 40%)

This shows that overall, object models produced with the help of ObSynth were more detailed
than those produced without.

11



0 1 2 3 4 5 6
number of ObSynth models containing object

5

4

3

2

1

0

nu
m

be
r o

f c
on

tro
l m

od
el

s c
on

ta
in

in
g 

ob
je

ct

0

0

0

0

3

0

0

0

0

1

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

3

1

0

0

0

0

Presence of Objects in ObSynth vs. Control Models

(a) Frequency for objects

0 1 2 3 4 5 6
number of ObSynth models containing field

5

4

3

2

1

0

nu
m

be
r o

f c
on

tro
l m

od
el

s c
on

ta
in

in
g 

fie
ld 0

0

0

1

37

0

0

0

0

1

2

19

0

0

0

0

0

6

0

0

0

0

1

2

0

0

0

2

2

3

1

2

0

1

2

0

0

3

3

0

0

0

Presence of Fields in ObSynth vs. Control Models

(b) Frequency for fields

Figure 7: This shows how frequently each distinct object (left) and field (right) occurs in both the
ObSynth models and the control group models. The lack of objects/fields in the upper left quad-
rant shows that ObSynth models rarely miss anything that control group models include, while
the presence of objects/fields in the lower right quadrant show that ObSynth models consistently
include objects/fields that users omitted.

5.3 (Q2) What is the quality of the objects, fields, and methods initially syn-
thesized by ObSynth before human editing?

Next, we wanted to better understand how ObSynth’s synthesis capabilities led to the improved
completeness of the final models. Were the ObSynth models more detailed because ObSynth
suggested fields and objects that did not occur to the unaided users, or was ObSynth simply
enabling users to themselves think of additional fields and objects, or in an extreme case, could
it be providing suggestions that were so wrong that they forced users to think harder about the
problem and generate more detailed object models as a result.

First, looking back to Fig. 7a, we found that the two objects in the bottom-right quadrant
were both automatically synthesized by ObSynth in step 2. We saw a similar trend for the fields
in the bottom-right quadrant of Fig. 7b: the majority of these were synthesized in step 4. One
such example is the ingredients field of the menu item object, which showed up in 83% of ObSynth
models but only 20% of control group models. This supports our hypothesis that ObSynth is able
to generate fields that users would not have thought of themselves but that they consider useful
once they see them. Overall, we found that an average of 92% of objects, 79% of fields, and 65% of
methods in the final object models in the ObSynth group were generated in the initial synthesis
steps.

We also wanted to understand if objects and fields that ObSynth synthesized remained in the
final user-edited model. We first examined the initial object names that ObSynth synthesized in
step 2. In all cases, they were customer, reservation, order, menu item, waiter, table. These six objects
almost always remained in the final ObSynth object models, only waiter was removed twice and
table removed once. Across the six participants in the ObSynth group, we found that an average
of 92% of objects, 73% of fields and 59% of methods that were automatically synthesized in step 4
remained in the final object model. This indicates that objects, fields, and methods that ObSynth
generated were of decent quality, so the synthesis step aided the user in designing the object
model. Qualitatively, participants in this group remarked that the initial objects synthesized in
step 2 were “perfect and complete” and that synthesis in step 4 “did most of the work for me”
and “was accurate most of the time”. Two participants, however, remarked that “it was sometimes

12



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
minutes

20

40

60

80

nu
m

be
r o

f o
bj

ec
ts

, m
et

ho
ds

, a
nd

 fi
el

ds

Size of Object Model over Time
control
ObSynth

Figure 8: Progress of participants over time for the two groups, measured as the total number of
objects, methods, and fields. There is a clear different in the workflow between groups: control
group participants incrementally added pieces to their object model, while ObSynth participants
took more time examining the synthesized model, as seen by the flat portions.

confusing what the generated field names were referring to”. We would like to mitigate this issue
in future work by also synthesizing descriptions for each object.

5.4 (Q3) Do people using ObSynth take less time to design object models?

Next, we wanted to understand if ObSynth participants were able to design object models faster
than control group participants because of the assisted automation. Measuring the time elapsed
from the moment participants clicked Begin to I’m Finished, we found that the ObSynth participants
spent an average of 14.4 minutes and a standard deviation of 1.6 minutes, while the control group
participants spent an average of 12.0 minutes with a standard deviation of 3.1 minutes. Therefore,
we saw no evidence that ObSynth helped speed up the task.

5.5 (Q4) How does ObSynth shift the workflow of participants building object
models?

In order to better understand this phenomenon, we wanted to explore how working with ObSynth
shifted the workflow of our participants. Thus, we measured the progress of each participant over
time as they designed the object model. As a rough heuristic capturing progress, we plotted
the total number of objects, methods, and fields in the object model throughout time in Fig. 8.
Among the control group, we see a steadily growing trend in progress, representing participants
incrementally building up the object model. One participant said, “I built up the object model
step by step, adding things as I thought of them being needed. At the end, I checked to make sure
everything was there and consistent”. A different story arises in the ObSynth group: we first see
an initial spike in progress, indicating the initial object model generated in step 4. This is followed
by a relatively flat period of time where participants are going through the generated model and
making corrections. We generally notice a slight decrease in total components from the initial
peak, as we designed the synthesis procedure to err on the side of overgeneration. Overall, the

13



total number of components in the final ObSynth models is larger than that for the control group
models on average, highlighting again that our tool leads to more detailed models. Participants
described their experience working with ObSynth as “mostly just going through and correcting
minor mistakes” and “adding a few more methods for convenience and deleting a few things that
didn’t make sense”.

6 Conclusion and Future Work

In this work, we introduced a new class of important program synthesis problems known as speci-
fication reification, focused on incorporating domain knowledge into traditional program synthesis.
We presented one specific instance of this task, object model synthesis, and designed an interactive
system, ObSynth, to help users complete this task by automatically synthesizing components of
the object model using GPT-3. Through our user study, we showed that ObSynth helps users come
up with more detailed object models, generates important pieces of the object model that users
often keep, and changes the workflow of users. Importantly, we found the added automation
support does not degrade the quality of object models.

We believe that specification reification is an important problem and welcome researchers to
introduce other synthesis problems fitting this framework. We identify many attractive direc-
tions for future investigation: first, there is significant room for the discovery of better synthesis
algorithms for object model generation. Second, we could explore how our system can better
understand and incorporate human edits to the object model to synthesize more relevant fields.
Third, a useful feature could be to have the model automatically suggest revisions to the object
model and catch user mistakes. Finally, it would be interesting to extend the object model to
include more features such as method arguments or descriptions of objects, fields, and methods.

References

Rajeev Alur, Pavol Černỳ, and Arjun Radhakrishna. 2015. Synthesis through unification. In Inter-
national Conference on Computer Aided Verification. Springer, 163–179.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. 2007. Dbpedia: A nucleus for a web of open data. In The semantic web. Springer, 722–735.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732 (2021).

Tomasz Boiński, Julian Szymański, Bartłomiej Dudek, Paweł Zalewski, Szymon Dompke, and
Maria Czarnecka. 2020. NLP Questions Answering Using DBpedia and YAGO. Vietnam Journal
of Computer Science 7, 04 (2020), 339–354.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. arXiv preprint arXiv:2005.14165 (2020).

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama,
Yisong Yue, et al. 2021. Neurosymbolic Programming. Now Publishers.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374 (2021).

14



Xinyun Chen, Chang Liu, and Dawn Song. 2018. Execution-guided neural program synthesis. In
International Conference on Learning Representations.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales, Luke
Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. 2020. Dreamcoder: Growing gen-
eralizable, interpretable knowledge with wake-sleep bayesian program learning. arXiv preprint
arXiv:2006.08381 (2020).

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained model for programming
and natural languages. arXiv preprint arXiv:2002.08155 (2020).

John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Notices 50, 6 (2015), 229–239.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis. Foundations
and Trends® in Programming Languages 4, 1-2 (2017), 1–119.

Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. 2020. Synthesize, execute
and debug: Learning to repair for neural program synthesis. Advances in Neural Information
Processing Systems 33 (2020), 17685–17695.

Geert Heyman, Rafael Huysegems, Pascal Justen, and Tom Van Cutsem. 2021. Natural language-
guided programming. In Proceedings of the 2021 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software. 39–55.

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram
Rajamani, and Rahul Sharma. 2021. Jigsaw: Large Language Models meet Program Synthesis.
arXiv preprint arXiv:2112.02969 (2021).

Ariel Levy, Monica Agrawal, Arvind Satyanarayan, and David A. Sontag. 2021. Assessing the
Impact of Automated Suggestions on Decision Making: Domain Experts Mediate Model Er-
rors but Take Less Initiative. In CHI ’21: CHI Conference on Human Factors in Computing Systems,
Virtual Event / Yokohama, Japan, May 8-13, 2021, Yoshifumi Kitamura, Aaron Quigley, Kather-
ine Isbister, Takeo Igarashi, Pernille Bjørn, and Steven Mark Drucker (Eds.). ACM, 72:1–72:13.
https://doi.org/10.1145/3411764.3445522

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022. Competition-level code
generation with alphacode. arXiv preprint arXiv:2203.07814 (2022).

George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM 38, 11 (1995),
39–41.

Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-Lezama. 2019. Learning to
infer program sketches. In International Conference on Machine Learning. PMLR, 4861–4870.

Maxwell Nye, Yewen Pu, Matthew Bowers, Jacob Andreas, Joshua B Tenenbaum, and Armando
Solar-Lezama. 2020a. Representing partial programs with blended abstract semantics. arXiv
preprint arXiv:2012.12964 (2020).

Maxwell Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M Lake. 2020b. Learning
compositional rules via neural program synthesis. Advances in Neural Information Processing
Systems 33 (2020), 10832–10842.

15

https://doi.org/10.1145/3411764.3445522


Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis.
ACM SIGPLAN Notices 50, 6 (2015), 619–630.

Illia Polosukhin and Alexander Skidanov. 2018. Neural program search: Solving data processing
tasks from description and examples. (2018).

Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun Radhakrishna,
Gustavo Soares, and Ashish Tiwari. 2021. Multi-modal Program Inference: a Marriage of
Pre-trainedLanguage Models and Component-based Synthesis. arXiv preprint arXiv:2109.02445
(2021).

Rohit Singh and Armando Solar-Lezama. 2016. SWAPPER: A framework for automatic generation
of formula simplifiers based on conditional rewrite rules. In 2016 Formal Methods in Computer-
Aided Design (FMCAD). IEEE, 185–192.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th international conference on World Wide Web. 697–706.

Gust Verbruggen, Vu Le, and Sumit Gulwani. 2021. Semantic programming by example with
pre-trained models. Proceedings of the ACM on Programming Languages 5, OOPSLA (2021), 1–25.

Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and Jacob Andreas. 2021. Leveraging lan-
guage to learn program abstractions and search heuristics. In International Conference on Machine
Learning. PMLR, 11193–11204.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2020a. Benchmarking multimodal regex syn-
thesis with complex structures. arXiv preprint arXiv:2005.00663 (2020).

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2020b. Optimal neural program synthesis from
multimodal specifications. arXiv preprint arXiv:2010.01678 (2020).

16



A Prompts for Each Subtask

In this section, we include the prompts we use to perform each of the eight subtasks in Table 1.
We omit (ST1), which is described in the main text.

(ST2) Synthesize additional object names This task is used when the user clicks on the “Auto Add
Object” button in the initial phase. We use the prompt in Fig. 9. This prompt gives the model
information on which tables are already present, both for more context and to avoid generating
tables that are already present. One note is that we found asking for a specific number of other
tables (we used three) helped performance.

Input: I want a classroom management app that tracks students, the assignments they’ve sub-
mitted, and the grades they’ve earned on those assignments. The app has the following tables:
student, submission, assignment, teacher.

Q: What are three other tables this app might have?
A: This app might have the following tables: course, gradebook, attendance.

I want a restaurant management app tracking customers, their reservations, their orders, and
menu items. The app has the following tables: customer, reservation, order, menu item.

Q: What are three other tables this app might have?

GPT-3 Output: A: This app might have the following tables: table, dish, price.

Figure 9: GPT-3 prompt to generate additional tables when the user clicks “Auto Add Object” in
the initial phase

(ST3) Synthesizing Field Names: In this subtask, we take the prompt, the name of an object, and
generate a list of fields for that object. The prompt is shown in Fig. 10. Of note is the inclusion of
two prompts for this task: a classroom management application and a pet store application. We
found that with just one prompt, GPT-3 sometimes overfit to that prompt, outputting fields that
were classroom application specific despite being fed a completely different prompt.

(ST4) Predicting types of fields: ObSynth uses a very simple prompt engineering approach to
predict the type of each field. Our prompt is shown in Fig. 11. Again, we use a primer to
demonstrate the type-prediction task. First, we tell GPT-3 the set of potential types, which we
extract by including the primitives and the object names in the current table. Then, we give GPT-3
examples of data type prediction questions with correct answers. GPT-3 is able to learn the type
prediction task, correctly predicting the data type for the “price” attribute in Fig. 11.

(ST5) Predicting the multiplicity of a field: To predict the multiplicity of each field (int vs.
List[int]), observe that in Fig. 10, we prompted GPT-3 to give us responses of the form “A student
has a name, an email address, a phone number, a list of assignments, and a list of grades.”. Note that “a
phone number” is distinguished from “a list of assignments”. Therefore, if a field is in plural or is
preceded by “list of”, then ObSynth predicts a list type (shown as “many” in the UI). Otherwise,
it predicts a base type (shown as “one”).

(ST6) Synthesizing method names: In order to generate methods, ObSynth asks questions like
“Q: What can a pet do?”, “Q: What else can a pet do”, and “Q: What are the method names for these
actions?”. Then, it asks what the method names for the actions are. The prompt is shown in Fig.
12.

(ST7) Synthesize additional field names: This subtask is used when the user clicks Auto Add Field.
The prompt is shown in Fig. 13.

17



Input: I want a classroom management app that tracks students, the assignments they’ve sub-
mitted, and the grades they’ve earned on those assignments. The app has the following tables:
student, submission, assignment, teacher.

Q: What does a student have?
A: A student has a name, an email address, a list of assignments, a list of submissions, and a
teacher.

I want a pet store app tracking customers. The pet store app should also keep the store’s inventory
of pets and allow customers to buy and sell pets.

Q: What does a pet have?

GPT-3 Output: A: A pet has a name, a species, a breed, a price, a list of customers, and a list of
transactions.

Figure 10: GPT-3 prompt to generate candidate from an object name.

(ST8) Synthesize additional method names: This subtask is used when the user clicks Auto Add
Method. The prompt is shown in Fig. 14.

B Qualitative Results for User Study

B.1 Generated Object Models

We include all the object models generated by the 11 participants in our study. The object models
from the six users using ObSynth are shown in Fig. 15, while those from the five models without
ObSynth are shown in Fig. 16.

18



Input: I have the following data types: int, float, string, datetime, character, student, teacher,
assignment.

Q: What is the data type of an attribute named ”id”?
A: int

Q: What is the data type of an attribute named ”name”?
A: string

Q: What is the data type of an attribute named ”cost”?
A: float

Q: What is the data type of an attribute named ”time”?
A: datetime

Q: What is the data type of an attribute named ”instructor”?
A: teacher

I have the following data types: int, float, string, datetime, customer, reservation, order, menu
item.

Q: What is the data type of an attribute named ”price”?
GPT-3 Output: A: float

Input: Q: What is the data type of an attribute named ”items”?
GPT-3 Output: A: menu item

Figure 11: GPT-3 prompt to predict data types of fields

19



Input: I want a classroom management app that tracks students, the assignments they’ve sub-
mitted, and the grades they’ve earned on those assignments.
Q: What can a student do?
A: A student can view their own submissions, drop a class, or view classroom announcements.
Q: What else can a student do?
A: A student can submit an assignment or view their grades.
Q: What are the method names for these actions?
A: The method names are: viewSubmissions, dropClass, viewAnnouncements, submitAssign-
ment, viewGrades

I want a pet store app tracking customers. The pet store app should also keep the store’s inventory
of pets and allow customers to buy and sell pets.
Q: What can a pet do?
GPT-3 Output: A: A pet can be bought or returned.

Input: Q: What else can a pet do?
GPT-3 Output: A: A pet can have its information updated.

Input: Q: What are the method names for these actions?
GPT-3 Output: A: The method names are: buyPet, sellPet, updateInformation

Figure 12: GPT-3 prompt for generating method names

Input: I want a classroom management app that tracks students, the assignments they’ve sub-
mitted, and the grades they’ve earned on those assignments.
Q: What are 3 other things a student might have?
A: A student might have a list of submissions, an address, and a list of assignments.

I want a task management application where users can create and manage tasks, set deadlines,
and receive notifications.A user has and a list of notifications. A task has a name, a description,
a deadline, a list of subtasks, and a list of users. A deadline has a name, a description, a date, and
a list of tasks.
Q: What are 3 other things a user might have?
GPT-3 Output: A: A user might have a profile, a list of tasks, and a list of notifications.

Figure 13: GPT-3 prompt for generating additional field names

Input: I want a classroom management app that tracks students, the assignments they’ve sub-
mitted, and the grades they’ve earned on those assignments.
The student object has the following methods: submitAssignment(), seeGrades(), addCourse().
Q: What other methods does the student object have?
A: getAssignments(), editSubmission()

I want a library app to track books. The customers can borrow books and return books from the
library.
The customer object has the following methods: borrowBook(), searchBook(), returnBook().
Q: What other methods does the customer object have?
GPT-3 Output: A: checkoutBook(), reserveBook(), renewBook()

Figure 14: GPT-3 prompt for generating additional method names

20



Figure 15: Object models designed by users with the help of ObSynth for a restaurant management
application

21



Figure 15: Object models designed by users with the help of ObSynth for a restaurant management
application, cont.

22



Figure 16: Object models designed by users in the control group for a restaurant management
application

23



B.2 Feedback

ObSynth group feedback: Participants in the ObSynth group found that the suggestions were of
decent quality, stating:

• “The initial suggestions for the objects was very spot on”

• “The fields themselves were pretty intuitive, I didn’t have to make many edits”

• “It was able to understand some of the concepts around the quantity of things and the
types.”

• “A lot of the adjustments I had to make were from my initial design decision of not taking
orders from the kitchen”

• “I think definitely the suggestions were helpful, it was a matter of deciding what I wanted
to keep in my particular case”

In addition, one participant commented on the difference in workflow: “It’s always easier
to react to something than create something from scratch. You can basically build CRUD apps
very quickly using something like this.” On the other hand, two participants remarked that “The
methods were a bit worse, it had a better time predicting fields that were useful” and that “it was
sometimes confusing what the generated field names were referring to,” indicating that ObSynth
still occasionally made mistakes while generating and that human feedback was necessary to
correct the mistakes.

Participants in the ObSynth group also provided feedback on the task setup and UI, saying:

• “It would have been helpful to have a diagram which shows the relationship between differ-
ent objects”

• “I found it confusing that some of the [methods] were multi-table operations, but just under
one table”

• “One-way/two-way was confusing, understanding it as a many-many relationship would
have been helpful”

Finally, one participant commented that “I would be curious to see how it did in a slightly
more complicated example, since this one is probably very common,” which is a direction of
future work.

Control group feedback: Users in the control group commented mostly on the UI and general expe-
rience, as they did not have access to ObSynth’s automation features. There were many positive
comments, indicating that even just having a UI is helpful for this task:

• “It was positive, overall a good experience”

• “It was really nice, I liked the general aesthetic”

• “I think the tool is pretty easy to use, I liked being able to add, edit, and delete with icons”

• “I like that it autopopulated when you created a connection, one way or many”

We also received helpful constructive feedback on our task setup:

• “There were a few UI things, sometimes the fields overlapped and ran into each other”

• “I noticed myself clicking on the fields instead of the green checkmark”

24



• “Maybe offer more relational tools, show how the different objects related to each other
graphically”

Finally, a few participants asked for more automation:

• “Maybe all the CRUD operations could have been added by default”

• “I wish there were a dropdown menu [or autocompletion] for types”

• “I don’t know if this is possible, but I wish there were a way to pre-populate fields, because
it’s very easy to mess up typing”

25


	1 Introduction
	2 Related Work
	3 The ObSynth Frontend
	3.1 From Text to Initial Object Model
	3.2 From Initial Object Model to Final Specification

	4 The ObSynth Backend
	4.1 Large Language Models and GPT-3 Prompt Engineering
	4.2 Individual Prompt-Engineering Subtasks
	4.3 End-to-end Pipeline of a Subtask

	5 User Study
	5.1 User Study Design
	5.2 (Q1) Are object models produced with the help of ObSynth more detailed than those without?
	5.3 (Q2) What is the quality of the objects, fields, and methods initially synthesized by ObSynth before human editing?
	5.4 (Q3) Do people using ObSynth take less time to design object models?
	5.5 (Q4) How does ObSynth shift the workflow of participants building object models?

	6 Conclusion and Future Work
	A Prompts for Each Subtask
	B Qualitative Results for User Study
	B.1 Generated Object Models
	B.2 Feedback


