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ABSTRACT

We seek to overcome limitations to code retrieval quality posed by the scarcity of
data containing pairs of code snippets and natural language queries in languages
other than English. We correspondingly test the following hypothesis: if a model
can map from English to code, and from other natural languages to English, then
how well can the model directly map from those non-English languages into
representations of code? To do so, we introduce two new datasets. For training
models, we build a corpus corresponding to paired English/Code data and combine
it with existing translation datasets given by pairs of English and other natural
languages. For evaluation, we make a new benchmark available, dubbed M2CRB,
containing pairs of text and code, for multiple natural and programming language
pairs – namely: Spanish, Portuguese, German, and French, each paired with code
snippets for: Python, Java, and JavaScript. Evaluation on both our new benchmark
tasks as well as on an existing code-to-code search task confirms our hypothesis:
models are able to generalize to unseen source/target language pairs they indirectly
observed during training. We examine models which both generate and retrieve
natural and programming languages and through ablations, we further verify the
influence of different design choices and training tasks in terms of whether or not
they contribute to generalization with unseen language pairs.

1 INTRODUCTION

Recent work has observed significant progress in settings where one seeks to obtain code snip-
pets conditional on natural language queries. In the generative setting, for instance, cases such
as AlphaCode (Li et al., 2022) obtained human-level performance in generating code from com-
petitive programming problem statements in plain English. In the retrieval/search setting on the
other hand, cpt-code (Neelakantan et al., 2022) showed that contrastive training of encoders
using pairs of docstring and code results in a semantic embedding where search can be efficiently
performed. Evaluation of cpt-code is made on the CodeSearchNet benchmark (Husain et al.,
2019) where, given a query in English, the model retrieves a code block deemed relevant among 1000
candidates. CodeSearchNet encompasses 6 programming languages, while queries are only in English.
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Figure 1: Illustration of the scheme we consider. Hypothesis:
if a model is able to map from English (the anchor) to Python
and from Portuguese to English, then it should be able to
directly map from Portuguese to Python.

As evidenced by the examples above,
the quality of code retrieval from nat-
ural language queries is rapidly in-
creasing. However, there’s a focus
on using English as the underlying
language of the source query, and
multi-source-language models are still
scarce. This is mostly due to the
lack of large scale parallel data be-
tween different natural languages and
code. An attempt towards defining
multi-programming-language transla-
tion systems, or transcompilers, was carried out in Transcoder (Roziere et al., 2020; 2021) where
multiple unparalleled data sources in different programming languages are considered. Beyond that,
in this work, we address the question of whether one can improve performance under settings where
models map multiple natural languages to multiple programming target languages.
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In particular, we study the code search from text setting and train models under multiple combinations
of source and target languages. Naive supervised training under such a setting would require
| S | × | T | parallel datasets, where S and T correspond to the sets of source natural and target
programming languages, respectively. To work around that, we employ a strategy aiming at multi-
modal language-invariant semantic embedding, where encoded data depends only on the underlying
implementation represented by programming languages or their descriptions represented in text. We
can then elect one of the source datasets as the anchor, denoted S∗ ∈ S, and instead train models
using parallel datasets between sources and the anchor, and between the anchor and the targets. In
other words, we replace the need for parallel data between all elements of S and T for parallel data
between elements of S, which enables the use of available natural language translation datasets.
At testing time, we put models to test under source/target combinations that are unseen during
training. An illustration of the described training scheme is provided in Figure 1. In this example,
S = {English,Portuguese}, T = {Python}, and S∗ = English. At training time, models observe
pairs of sentences in English and Python snippets as well as Portuguese and English pairs. At testing
time, we then search Python directly from queries in Portuguese. Put simply, we test whether models
generalize to new language combinations, only indirectly observed during training.

Contributions. Our contributions are summarized as follows:

1. We introduce a new evaluation dataset (high quality - low volume) dubbed M2CRB, where multiple
natural languages are used to search over a codebase containing multiple programming languages.
In particular, the data contains docstrings in Spanish, Portuguese, German, and French, paired with
code snippets in languages such as Python, Java, and JavaScript.

2. We supplement the training partition of CodeSearchNet with additional data (high volume - low
quality) for a subset of the programming languages they consider (English to Python, Go, Java, and
JavaScript). In particular, the natural/programming languages observed in this complementary dataset
are chosen to be such that they are never seen at testing time.

3. We contribute a training recipe including data augmentation strategies that enables search over
unseen language pairs by inducing a language-independent semantic embedding. We further report
experiments showing the effects of different design choices and the performance of contrastive
schemes and generative tasks, as well as their combination.

2 PROBLEM SETTING

In the following, we formally define the setting briefly introduced on the above and exemplified
in Figure 1. Given a set S of source data distributions along with a set T of target data, training
will require paired data from one of the sources, which will be referred to as anchor and denoted
S∗, and all the targets. In addition, we further require access to paired data between the anchor and
the remaining source domains. Our training dataset thus corresponds to the union of finite samples
observed from the following distributions:

(S∗, T ) ∀ T ∈ T , (S∗, S) ∀ S ∈ S −S∗,

where the parenthesis notation (P,Q) indicates the joint over distributions P and Q. In Section 3.1,
we describe the approach we take in order to construct such a dataset in practice. While those two sets
of paired data should suffice in order to enable mapping from any source to any target distribution,
we can add data by considering non-anchor source/source combinations as well as target/target
combinations whenever those are available. For testing on the other hand, we seek models able
to map between any combination of source and target distributions. We thus build our test set by
observing pairs from the union of the following set of joints:

(S, T ) ∀ S ∈ S, T ∈ T .

We finally remark that any data realization x observed from any distribution x ∼ D ∈ S ∪ T
corresponds to a sequence with length L of symbols or tokens from a shared vocabulary V: x =
[x1, ..., xL] : xi ∈ V. Moreover, we highlight that we use the terms map/mapping in a rather general
sense to mean either a generative case where one literally translates from source to target, or a
discriminative case where one retrieves from a set of candidate targets given an instance from the
source. As will be further discussed in Section 4, both types of mappings will be used when training
models, but only the discriminative one is considered during testing since our ultimate goal is to
define efficient code search from multi-natural-language source queries.
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3 MULTI-LANGUAGE DATASETS

3.1 TRAINING SET - MULTIPLE SOURCE/TARGET COMBINATIONS

In Section 2, three types of paired data are discussed: anchor/target, anchor/source, and non-anchor
source/target pairs. To build a dataset comprising all types of pairs, we combine a mix of both existing
paired datasets of different kinds, along with new data we introduced. In what follows, we describe
separately how we proceed in order to obtain or create each data component. Moreover, we highlight
that we set the anchor S∗ to English and the set T to the set of programming languages represented
in CodeSearchNet, i.e., T = {Python, Go, Java, JavaScript, PHP, Ruby}.

3.1.1 ANCHOR-TARGET PAIRED DATA

The pairs represented by (S∗, T ) ∀ T ∈ T correspond to the training partition of CodeSearchNet (Hu-
sain et al., 2019) further augmented with supplementary data we prepared.

New dataset: additional CodeSearchNet-style training data. CodeSearchNet was built by leverag-
ing the fact that function docstrings and implementations define easy to obtain text/code pairs, and
then pre-processing of GitHub data was performed. In particular, Tree-sitter1 parsers are used
to create docstring/code pairs for all languages in T . We introduce additional data by repeating that
procedure on the dump of GitHub in The Stack Kocetkov et al. (2022), focusing only on repositories
not covered by CodeSearchNet and on a subset of T , substantially increasing the total amount of
English/Code training pairs.

3.1.2 ANCHOR-SOURCE PAIRED DATA

For anchor/source pairs, we leveraged datasets introduced for machine translation tasks. Namely,
a subset of WMT-19 (Wikimedia-Foundation, 2019) was considered given by the English/German
and English/Finnish partitions. We further considered non-anchor source/source combinations to
increase the amount of training data. As such, we considered the French/German subset of WMT-19
as well as the Spanish/Portuguese and Spanish/Galician partitions of Tatoeba (Tiedemann, 2020).
Finally, a single target/target case is considered and is given by the code translation data within
CodeXGLUE (Lu et al., 2021). Summary statistics of the complete training data is shown in Table 1.

Dataset Row count Sampling proportion (×10−5) Epochs
CodeSearchNet 1880853 0.0532 3.5

GH-Python (Ours) 15000002 0.0067 0.5
GH-Java (Ours) 15000014 0.0067 0.5
GH-GO (Ours) 15000078 0.0067 0.5

GH-JavaScript (Ours) 2000040 0.0500 3.3
WMT-19 (DE-EN) 1995208 0.0501 3.3
WMT-19 (FR-DE) 1999990 0.0500 3.3
WMT-19 (FI-EN) 2000000 0.0500 3.3
Tatoeba (ES-PT) 67777 1.4754 29.1
Tatoeba (ES-GL) 3132 31.9285 30.0

CodeXGLUE 10300 9.7087 30.0

Table 1: Statistics of each of the datasets used to compose the full training corpus we use. Given the
variability in size of each dataset as indicated by the row counts, we adjust sampling proportions
during training so that datasets are uniformly represented in the actual training sample. The number
of epochs represented in the rightmost column indicates the approximate number of times we iterate
over the entire dataset each time we feed approximately 30 billion tokens to a model. The GH prefix
indicates the supplementary data we processed.

1https://tree-sitter.github.io/tree-sitter/
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3.2 M2CRB - UNSEEN PAIRS OF LANGUAGES

For testing, we build a new evaluation task considering source/target pairs that do not appear in the
training partition. To do so, we use data collected from The Stack Kocetkov et al. (2022), perform
parsing on files corresponding to languages of interest from repositories that are not included in
CodeSearchNet to get docstring/code pairs, and finally perform language identification on docstrings
to end up with data containing non-English docstrings. To perform language identification, we
ensemble three different off-the-shelf open-source language classifiers from text.2,3,4 To build the
test set, we then consider only the instances for which the three classifiers agreed upon a language.
Finally, we further perform human evaluation to filter out misclassifications, i.e., native speakers of
each of the considered natural languages verified each docstring to ensure they correspond to the
correct language. The resulting M2CRB’s row counts per natural/programming language pair are
reported in Table 2 and further details on data filtering and processing can be found in Appendix A.

4 MODELS AND TRAINING

Natural Lang. Programming Lang. TotalPython Java JavaScript
Spanish 1298 598 631 2527

Portuguese 1376 694 450 2520
German 543 928 83 1554
French 779 164 199 1142
Total 3996 2384 1363 7743

Table 2: Row count of M2CRB per combination of the un-
derlying natural language of docstrings and programming
language of corresponding code. Further details on data fil-
tering and processing can be found in Appendix A.

Our main goal is to define a semantic
embedding so as to enable efficient
cross-modality search. To do that,
we leverage a multi-modal contrastive
training strategy and encode input se-
quences into vectors denoted zEMB ,
and such vectors are encouraged to
match for corresponding source and
target instances. For example, doc-
strings and corresponding implemen-
tations should map to similar vectors
in terms of some distance measure.
Similarly, matching sentences in two
different natural languages should em-
bed into neighboring points, as should
two code snippets implementing the
same functionality but written in different programming languages. In addition to training objectives
for which properties just described will hold, we also consider multi-task models where generative
components are added to enable translation from source to target assuming that such a functionality is
often required. We then evaluate the impact in search/retrieval performance given by giving up some
of the capacity of the semantic encoder to instantiate a decoder. That is, we consider the standard
sequence-to-sequence setup and introduce tasks such as translation and denoising, both performed
alongside the main contrastive loss. Additionally, we further consider a decoder-only model where
we carry out the contrastive learning on top of representations, but also perfom generative tasks at
the same time. We remark however that in all cases our main goal is to be able to search/retrieve
effectively, and generative tasks are added to assess to what extent they affect retrieval performance.

Our main models then correspond to either a sequence-level encoder, and an encoder-decoder pairs,
both illustrated in Figure 3. A decoder-only architecture is additionally considered. The encoder,
denoted E from now on, is responsible for actually embedding data from whichever modality (i.e.,
code or text). The embedding corresponds to E’s output at the end-of-sequence special token [EOS],
appended to all inputs prior to feeding E . In Figure 3, embeddings used to represent input sequences
are denoted zEMB . The decoder, denoted D, on the other hand, accounts for the generative tasks
by auto-regressively predicting tokens. Finally, the decoder-only model we consider is illustrated in
Figure 4. Given the two types of losses mentioned above, we then train with their convex combination:

L = αLcontrastive + (1− α)Lgenerative, (1)
where α ∈ [0, 1] is a hyperparameter weighing the importances of the two components. The encoder-
only case, which will be further discussed in Section 5, corresponds to simply setting α = 1. Further
details on the training procedure as well as the training losses are described in the following.

2https://github.com/saffsd/langid.py
3https://github.com/google/cld3
4https://huggingface.co/papluca/xlm-roberta-base-language-detection.
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4.1 CONTRASTIVE TASK

Given a batch of n pairs of sequences [xi, yi]
n
i=1 : xi, yi ∼ (S ∈ S, T ∈ T ), our contrastive

objective relies on the similarity matrix Sim given by rescaled cosine similarities measured between
embeddings of x and y:

Sim[i, j] = 2 ∗ cos(E(xi)
eos, E(yj)eos)− 1. (2)

We then force Sim to be an identity matrix, that is, for the similarity between paired data to be greater
than that between unpaired instances, i.e.:

Lcontrastive = ||Sim− In||2. (3)

Similar to CLIP (Radford et al., 2021) however, in practice, we implement a variation of Lcontrastive

that shares its minimizers since it’s easier to train against this variation, as observed empirically.
The loss we use treats Sim as a batch of logits, and places labels on the main diagonal to define a
cross-entropy objective. An implementation of the Lcontrastive objective used during training of our
models is shown in Figure 8.

4.2 GENERATIVE TASKS

We consider the rather standard autoregressive maximum likelihood objective commonly used in
sequence-to-sequence setups. Assuming access to a batch of paired sequences from source and target
distributions, the objective will be given by:

Lgenerative =
1

n

n∑
i=1

L′∏
t=1

pD(y
t
i |y1i , ..., yt−1

i , E(xi)). (4)

We then take advantage of the fact that all training datasets are parallel, and define translation auxiliary
tasks. In addition, we further introduce a denoising objective in which the original sequence is to
be recovered from its noisy version where tokens are randomly dropped out, and the dropping out
probability is assumed to be a tunable hyperparameter.

5 EVALUATION

We leverage pre-trained codeT5 (Wang et al., 2021) models in order to implement E and D for most
cases except for the decoder-only case, where we start from CodeGen Nijkamp et al. (2022a). The
codeT5 model builds on the T5 architecture (Raffel et al., 2020) by including pre-training tasks
that rely solely on code, such as denoising or identifier tagging, but also translation. In this case,
models perform bimodal dual generation, i.e., back and forth translation between programming and
natural language. In addition to the contrastive task performed on top of E’s outputs, we also consider
generative tasks such as denoising, in which case we ask the model to “in-paint” dropped out tokens.
Translation tasks are also performed in the dual generation setting. We remark that, in our case,
generative auxiliary tasks are performed on top of all training datasets, including those containing
only natural language. CodeGen on the other hand is a decoder-only language model trained on a
mix of natural and programming language.

Our experiments focus in the comparison between the discriminative case where the full model is
dedicated to retrieval versus the generative setting where translation is also performed, and then
some of the model capacity is moved to a decoder. That is, under a not widely varying parameter
budget, we assess whether adding functionality to a model, i.e., by enabling it to generate in addition
to retrieve, will hurt search performance relative to an encoder that devotes its full capacity to a
discriminative objective. We further consider ablations where we drop training tasks or data. As for
pre-processing, subword tokenization is performed using the same strategy employed by Wang et al.
(2021), i.e., a byte-pair encoding (BPE) Sennrich et al. (2015) is used and code-specific tokens are
included in the vocabulary such as brackets and whitespace sequences. Moreover, given a training
pair (x, y), we append special tokens and feed the model with the following template:

({lang[y]} : {x}[EOS], {y}[EOS]),

where the operator lang(·) returns the underlying language of its argument.
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Prog. Lang Nat. Lang. Disc. Gen.+Disc. Ablations
Gen. No denoising Dec.

Python

de 58.1% 60.2% 4.0% 53.2% 65.7%
es 75.5% 74.8% 4.1% 65.8% 63.8%
fr 64.5% 70.3% 4.3% 65.0% 68.2%
pt 70.6% 66.9% 3.7% 58.0% 51.0%

Java

de 31.3% 23.2% 3.5% 24.2% 21.7%
es 37.2% 27.3% 3.6% 31.0% 22.0%
fr 47.4% 39.3% 8.0% 40.7% 49.9%
pt 34.8% 26.4% 4.5% 27.4% 26.6%

JavaScript

de 61.6% 62.2% 12.2% 59.2% 55.7%
es 28.6% 22.2% 4.6% 21.8% 19.6%
fr 30.8% 30.5% 6.7% 31.4% 28.0%
pt 27.2% 20.8% 4.4% 22.5% 14.3%

Avg. 47.3% 43.7% 5.3% 41.7% 40.5%

Table 3: M2CRB’s results for code search from natural language queries in different languages. Results
correspond to the area under the MRR curve (auMRRc, the higher the better).

Data augmentation is further performed during training so as to avoid spurious solutions, able to
retrieve by simply matching keywords present in both docstrings and actual implementations. That
is, in early experiments, we noticed well performing models would simply retrieve code snippets
for which variable or function names would appear in the docstrings. To counter that and enforce
actually semantic retrieval, we remove this “shortcut” by randomly assigning meaningless function
names in codes snippets, and via randomly replacing variable names by uninformative strings.

5.1 EVALUATION METRIC

Given paired sets of n points from the source and target distributions as denoted by x, y =

x1, ..., xn, y1, ..., yn
i.i.d.∼ (

⋃| S |
i=1 Si,

⋃| T |
i=1 T i), evaluations will require computation of the mean

reciprocal rank defined by

MRR(x, y) =
n∑

i=1

1

rank(x, y, i)
, (5)

where the rank corresponds to the position/index of Yi in the ordered set of similarities

rank(x, y, i) = index(Sim(xi, yi), {Sim(xi, y)}sorted), (6)

and index(·, {·}) returns the position of its first argument in the ordered set given as the second
argument. Note that we overload Sim, defined in the same way as that used to compute entries of the
similarity matrix in (2), and compute it both for data pairs, where the output is a scalar, and between
a source data point and a set of target domain instances, in which case a set of similarities is output.
We then evaluate models under varying sizes of the underlying sets. That is, we compute the area
under the MRR curve, obtained for increasing sizes of retrieval sets, as indicated in the following:

auMRRc =
∫ 1

0

MRR(x, y1:⌊n∗t⌋)dt. (7)

To approximate (7), we discretize t so that t = {5%, 10%, 20%, 30%, 50%, 75%, 100%}.

5.2 MULTI-LANGUAGE EVALUATION WITH M2CRB

We perform evaluations on M2CRB in terms of auMRRc as reported in Table 3 for different models,
while MRR curves as a function of t are displayed in Figure 5 in Appendix C.2. In particular, we are
concerned with assessing to what extent models manage to generalize to source/target pairs unseen
during training. We further seek to compare fully discriminative encoder-only models with models
able to both retrieve and generate. Model identifiers reflect the model architecture and training
objective such that (Disc.) stands for discriminative and corresponds to the encoder-only model.
Similarly, the (Gen.+Disc.) case refers to encoder-decoder settings where models are trained against
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the discriminative/generative objective defined in (1). In addition, we consider ablation cases where
training objectives are dropped such as (Gen.) which corresponds to an encoder-decoder pair trained
with the generative objective only (i.e., α = 0 in 1), a (Gen.+Disc.) model where the denoising
objective is dropped, and finally, a decoder-only model (Dec.) trained against both discriminative
and generative objectives. Results show that most models do manage to achieve good retrieval
performance even if all combinations of source/target languages were never presented to the models
during training. Interestingly, despite the significant difference in encoder sizes, we do not observe
a drastic gap between encoder-only and encoder-decoder models on average. That is, if generation
is important downstream, using multi-task models will not hurt retrieval performance in the multi-
source-language case to a very large extent as observed in the language combinations we considered.
In terms of the ablation cases, we highlight that the results of encoder-decoder architectures trained
against generative objectives only (Gen.) make it clear that contrastive learning is required in order
for embeddings to be semantically structured and language invariant. Moreover, removing generative
tasks such as denoising might hurt performance, and the decoder-only model doesn’t reach the level
of the encoder-decoder setting, and thus the strategy of concentrating the full parameter budget in a
decoder is not enough to reach the performance of encoder-only models.

5.3 CODE-TO-CODE EVALUATION

Disc. Gen.+Disc. Ablations
Gen. No denoising Dec.

81.4% 66.4% 4.7% 61.7% 19.0%

Table 4: Results for code search from code queries in terms
of auMRRc on the Python-Java data of (Roziere et al., 2020).

We now push our models further
and test their ability to generalize
to unseen pairs of languages in the
case where target/target combinations
are considered. To do so, we use
the Python-Java paired data collected
from GeeksforGeeks and discussed in
Roziere et al. (2020) given by imple-
mentations in both language of the so-
lution of a given problem. In other
words, models are tasked with querying a codebase in Java using Python snippets. During training
however, only natural-programming language or natural-natural language combinations are observed
by the models. Results in terms of auMRRc are reported in Table 4 while MRR curves are displayed
in Figure 6. Once more, results indicate that models are clearly able to generalize to unseen combina-
tions of domains, however the gap between encoder-only and the multitask encoder-decoder models
grows significantly now that tasks became more difficult. Also, the decoder-only models observed a
much bigger gap relative to the other cases in this more challenging scenario. Removing capacity
from the encoder seems particularly detrimental to retrieval performance when the task difficulty
increases.

5.4 CODE SEARCH FROM QUERIES IN ENGLISH

Prog. Lang. Disc. Gen.+Disc. Ablations
Gen. No denoising En. Dec.

PHP 33.2% 33.9% 0.3% 33.5% 31.9% 39.0%
JavaScript 40.4% 39.5% 0.7% 39.8% 31.2% 41.0%

Python 65.6% 71.4% 0.3% 66.3% 54.9% 67.2%
Go 61.0% 61.6% 0.9% 60.1% 47.3% 61.1%

Java 37.6% 36.3% 0.5% 37.1% 31.3% 36.4%
Ruby 48.2% 37.0% 1.0% 42.2% 41.0% 47.9%
Avg. 47.7% 46.6% 0.6% 46.5% 39.6% 48.8%

Table 5: Code search from queries in English in terms of auMRRc for
the CodeSearchNet test set.

Finally, we run a more stan-
dard English to code eval-
uation using the test set
of CodeSearchNet to assess
the effect of including extra
language combinations in
the training set. We thus in-
clude a further ablative case
where a model is trained us-
ing the same objective as
the (Gen.+Disc.) case, but
only the English to code
datasets are used for train-
ing while all other datasets
are dropped. This case is indicated by (En.) in Table 5 and in the MRR curves partially displayed in
Figure 7. Models that were trained on multiple datasets involving different natural languages perform
better than models trained in English to code data only. Moreover, similarly to the multi-source lan-
guage evaluation discussion in Section 5.2, we did not observe too large a gap between encoder-only
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and encoder-decoder models, suggesting once more that evaluation tasks where source/target pairs
are closer to what was observed during training will result in a smaller gap between the two types of
models. Finally, contrary to the other evaluations, the decoder-only model was the best performer on
average in this case, which leads to the overall recommendation of using this kind of model only if
the evaluation source/target pairs match those observed during training.

6 RELATED WORK

Other datasets. Acquiring aligned code and natural language pairs is key to solve tasks such as code
retrieval and code summarization. Towards this goal, Yin et al. (2018) proposed CoNaLa, a dataset
mined from StackOverflow consisting of English intent-snippet pairs with Python and Java code.
The same methodology was later used in MCoNaLa (Wang et al., 2022) to provide English, Spanish,
Japanese and Russian text to Python pairs. A donwside of these datasets is that they are based on Q&A
pairs from StackOverflow and thus they are not suitable for open-ended code generation. Differently,
CodeSearchNet (Husain et al., 2019) leverages English comments from GitHub repositories in 6
programming languages (Go, Java, JavaScript, PHP, Python, and Ruby). We follow the same data
gathering procedure as CodeSearchNet, extending it by a factor of approximately 25, and adding a
new test set with textual queries in Spanish, Portuguese, German, and French.

Code models. The success of transformers for natural language modelling (Vaswani et al., 2017) has
motivated researchers to explore their usefulness for code modelling. CodeParrot (Tunstall et al., 2022)
was trained with data from GitHub for code completion on a single language. CodeGen (Nijkamp
et al., 2022b), PolyCoder (Xu et al., 2022), Codex (Chen et al., 2021), and CodeT5 (Wang et al., 2021)
were trained on additional programming languages as well as natural language queries in English.
In this work, we enhance a pre-trained CodeT5 to support new additional natural languages such as
Spanish, Portuguese, German, and French.

Contrastive methods. Recent work has leveraged contrastive techniques to learn a useful sentence-
or document-level embedding space where retrieval can be performed efficiently. GTR Ni et al. (2021)
for instance, showed that dual-encoder settings can benefit from scaling up model size. SimCSE,
on the other hand, showed that simple strategies such as dropping out tokens leads to surprisingly
effective augmentation approaches to create positive pairs for unsupervised learning of sentence
embeddings. In settings where the focus lies on finding shared embedding spaces between text and
code, DocCoder (Zhou et al., 2022) uses a contrastive schemes to match representations from natural
language queries to retrieve documentation later used for code generation. Most similar to our work,
cpt-code (Neelakantan et al., 2022) was pre-trained with contrastive learning to learn a common
space between English text and code. In our work, we add an additional element to the text-code pair
consisting of text-text pairs from different languages, resulting in a multilingual model.

7 CONCLUSION

We showed that one can overcome the lack of multi-language paired data by introducing indirect
paths from source to target languages, i.e., a model able to map from source A to source B and
from source B to a target, can also map directly from source A to the target. To show evidence of
that, we introduced a new dataset referred to as M2CRB where paired data is available containing
multiple natural languages as source and multiple programming languages as target. An extensive
empirical evaluation in the code search/retrieval setting was carried out in order to indicate how
different design choices influence performance under this out-of-distribution generalization condition
we consider. Interestingly, we identified cases where one can safely give up capacity from the encoder
to enable generative capabilities without affecting retrieval performance significantly. Similarly,
our experiments showed that once tasks become more difficult, then the gap enlarges and having
single-task dedicated encoders might be preferable. Moreover, results suggest that adding different
data sources that do not correspond to English to code improves English to code performance, such
that adding multi-language capabilities in this case does not affect performance in the original task.
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A ADDITIONAL DATA PREPARATION DETAILS

M2CRB as well as the training dataset we built were both mined from The Stack Kocetkov et al. (2022),
which contains over 3TB of permissively-licensed source code files from GitHub. The workflow to
mine and prepare data, as illustrated in Figure 2, roughly consists of (1)-filtering out repositories that
appear in CodeSearchNet, (2)-filtering the files that belong to the programming languages of interest,
(3)-filtering the files that likely contain text in the natural languages of interest, (4)-AST parsing, and
(5)-performing language identification of docstrings in the resulting set of functions/methods. In
further detail, for (2), we simply check files extensions. For (3) on the other hand, for each file, we
check the fraction of overlaps between words and the union of vocabularies on the natural languages
of interest. We keep only the files for which the fraction is greater than a threshold. Remaining files
are AST parsed, and we finally perform language identification with three independent classifiers
on each docstring, i.e., we ensemble three different off-the-shelf open-source language classifiers
from text.5,6,7 If a docstring is in English, that function/method is added to traing set. Otherwise, we
perform a further step and ask a human to verify the ensemble’s prediction. The resulting non-English
functions are added to M2CRB. We remark that we do not exaust The Stack and stop once we find a
certain number of natural/programming language combinations.

The Stack

Repo Filter

Prog. Lang. 
Filter

Nat. Lang. 
Pre-filter

AST Parsing

DocString 
Lang. ID

Files from repos with permissive licenses

Skips repos within CodeSearchNet

Keeps files from target prog. languages

Keeps files from target nat. languages (low accuracy/latency)

Parse files whose text is likely written in a target language

Lang. identification on docstrings (high accuracy/latency)

English?

Yes
No

Add to train 
data

Human 
evaluation

Add to 
M2CRB

Figure 2: Data preparation workflow.

5https://github.com/saffsd/langid.py
6https://github.com/google/cld3
7https://huggingface.co/papluca/xlm-roberta-base-language-detection.
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B MODEL DETAILS

x1 x2 .... xL [EOS] [PAD] [PAD]

z1 z2 .... zL zEMB

y1 y2 .... yL′ [EOS]

y1 y2 .... yL′ [EOS]

DecoderEncoder

Figure 3: Encoder-decoder pair we consider in our experiments. Contrastive training is performed
on top of embeddings obtained at the [EOS] token output by the encoder. Generative tasks, on the
other hand, are performed with standard sequence-to-sequence maximum likelihood estimation.

x1 .... xL [SEP]

zEMB

y1 .... yL′ [EOS]

y1 .... yL′ [EOS]

z1 .... zL′ [EOS]

FC Layer

Decoder

Figure 4: Decoder-only setting we consider in our experiments. Contrastive training is performed
on top of embeddings obtained at the separator token [SEP] prior to final fully-connected layer.
Generative tasks, on the other hand, are performed with standard sequence-to-sequence maximum
likelihood estimation.
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Prog. Lang Nat. Lang. Disc. Gen.+Disc. En.Direct Translate Direct Translate

Python

de 58.1% 63.4% 60.2% 65.0% 54.2%
es 75.5% 69.4% 74.8% 66.9% 60.2%
fr 64.5% 64.5% 70.3% 66.1% 57.2%
pt 70.6% 63.5% 66.9% 61.6% 54.7%

Java

de 61.6% 36.8% 62.2% 28.5% 25.5%
es 28.6% 39.1% 22.2% 37.0% 34.5%
fr 30.8% 55.4% 30.5% 45.9% 48.8%
pt 27.2% 40.6% 20.8% 35.0% 33.7%

JavaScript

de 31.3% 60.4% 23.2% 61.9% 52.2%
es 37.2% 30.8% 27.3% 28.5% 22.9%
fr 47.4% 45.5% 39.3% 40.8% 37.3%
pt 34.8% 35.0% 26.4% 30.6% 23.8%

Avg. 47.3% 50.4% 43.7% 47.3% 42.1%

Table 6: M2CRB’s results with an auxiliary translator. Results correspond to the area under the MRR
curve (auMRRc, the higher the better).

C ADDITIONAL RESULTS

C.1 RESULTS WITH AUXILIARY TRANSLATOR

In Table 6, we report additional results on M2CRB when an external translator is used. That is, given a
textual query, we first translate it into English using some external service, and then query the model
using the result. In particular, we used the public Google translate API8 and compared our models
with a model trained with only English to code data. We further report side by side comparisons of
our models when we directly translate in the original language versus the cases where we translate
beforehand. Both the encoder-only and encoder-decoder models perform better on average than a
model trained exclusively on English to code, and that’s the case no matter whether or not an auxiliary
translator is used. However, both our models benefited from the extra translation component on
average, though that’s not the case for every language combination.

8https://pypi.org/project/googletrans/
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C.2 MRR CURVES
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Figure 5: MRR curves for cross natural language evaluation.
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Figure 6: MRR curves for code to code evaluation.

0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

php
En
Dec
Gen
No denoising
Disc
Gen+Disc

0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

javascript
En
Dec
Gen
No denoising
Disc
Gen+Disc

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

M
RR

python

En
Dec
Gen
No denoising
Disc
Gen+Disc

0.2 0.4 0.6 0.8 1.0
Data fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
RR

go

En
Dec
Gen
No denoising
Disc
Gen+Disc

0.2 0.4 0.6 0.8 1.0
Data fraction

0.0

0.1

0.2

0.3

0.4

M
RR

java

En
Dec
Gen
No denoising
Disc
Gen+Disc

0.2 0.4 0.6 0.8 1.0
Data fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

ruby

En
Dec
Gen
No denoising
Disc
Gen+Disc

Figure 7: MRR curves for English to code evaluation.
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D ADDITIONAL TRAINING DETAILS

In terms of model architectures, our encoder-only models build upon the encoder of the
codet5-base architecture, while encoder-decoder pairs build upon the codet5-small. As
discussed in the main text, the encoder of the base configuration has a similar parameter count
relative to the full small configuration, so that we study the impact in retrieval given by converting
part of an encoder into a decoder to enable multi-tasking. Our decoder-only architecture reuses the
codegen-350M-multi configuration.

An implementation of the exact variation of Lcontrastive, similar to CLIP (Radford et al., 2021), is
shown in Figure 8. In particular, it shares its minimizers with the loss described in the text, but was
observed to be easier to train against in practice. The loss treats the similarity matrix Sim as a batch
of categorical log-probabilities, places labels on the main diagonal, and then defines a cross-entropy
objective so that entries in the main diagonal are forced to be greater than off-diagonal elements.

Finally, we remark that we found that setting α = 0.5 would work well for the encoder-decoder mod-
els we consider so that both generative and discriminative objectives are given the same importance.
The same was applied for the decoder-only case.

import torch

def contrastive_loss(
x_source: torch.FloatTensor,
y_target: torch.FloatTensor) -> torch.FloatTensor:
"""Computes contrastive loss.

Args:
x_source (torch.FloatTensor): Batch of normalized source

embeddings. Expected shape is [batch_size, embedding_dim].
y_target (torch.FloatTensor): Batch of normalized source

embeddings. Expected shape is [batch_size, embedding_dim].

Returns:
torch.FloatTensor: Contrastive loss.

"""

# Compute similarity matrix.
sim = x_source @ y_target.T

# A row-wise cross-entropy criterion is used
# with labels placed on the main diagonal.
ce_labels = torch.arange(sim.size(0)).long()
contrastive_loss = torch.nn.functional.cross_entropy(

sim,
ce_labels)

return contrastive_loss

Figure 8: Pytorch implementation of the contrastive loss we consider taking as inputs normalized
representations of source/target data.
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