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ABSTRACT

Automated Program Repair (APR) can help developers automatically generate
patches for bugs. Due to the impressive performance obtained using Large Pre-
Trained Language Models (LLMs) on many code related tasks, researchers have
started to directly use LLMs for APR. However, prior approaches simply repeat-
edly sample the LLM given the same constructed input/prompt created from the
original buggy code, which not only leads to generating the same incorrect patches
repeatedly but also miss the critical information in testcases. To address these lim-
itations, we propose conversational APR, a new paradigm for program repair that
alternates between patch generation and validation in a conversational manner.
In conversational APR, we iteratively build the input to the model by combining
previously generated patches with validation feedback. As such, we leverage the
long-term context window of LLMs to not only avoid generating previously incor-
rect patches but also incorporate validation feedback to help the model understand
the semantic meaning of the program under test. We evaluate 10 different LLMs
including the newly developed ChatGPT model to demonstrate the improvement
of conversational APR over the prior LLM for APR approaches.

1 INTRODUCTION

Bugs in software can cause significant financial losses Matteson (2018) and create dangerous health
and safety problems Hanbury (2019). Due to the high manual cost of fixing bugs O’Dell (2017),
Automated Program Repair (APR) Gazzola et al. (2019) is a promising solution to reduce developer
work by automatically generating patches given the buggy code and failing testcases.

Traditionally, APR approaches commonly use the paradigm of Generate and Validate (G&V), where
APR tools will first generate a list of candidate patches given the original buggy code and then
validate each one sequentially until a plausible patch that passes all the testcases is found. Plausible
patch is then passed on to a human developer where they have to determine if this is a correct
patch that correctly fixes the underlying bug. Traditional APR approaches such as template-based
tools Ghanbari et al. (2019); Liu et al. (2019); Lou et al. (2020) have been proven useful in fixing
bugs with pre-defined templates to match buggy and corresponding fix code patterns. Recently,
researchers have designed learning-based APR tools Ye et al. (2022); Zhu et al. (2021); Jiang et al.
(2021) which build a Neural Machine Translation (NMT) model by training on pairs of buggy and
patch code. However, these learning-based APR tools suffer from lack of patch variety as it can
only repair the types of bugs that are a part of the buggy/patch training data. Furthermore, these bug
fixing datasets can be difficult to construct as they require scraping open-source bug fix commits
which may contain many false positives, adding noise to the dataset.

Recognizing the limitation of prior learning-based APR tools, researchers have started to look
into directly leveraging Large Pre-Trained Language Models (LLMs) for APR without fine-tuning.
LLMs have proven their ability in various code generation tasks Austin et al. (2021). Xia & Zhang
(2022) first introduced cloze-style APR where a LLM directly fill-in the correct code given its sur-
rounding context. Other studies Prenner et al. (2022); Kolak et al. (2022); Xia et al. (2023) have also
investigated directly applying different types of LLMs for APR by smartly applying prompts or giv-
ing original buggy code as context. Typically, directly applying LLMs for APR involves creating a
common prompt/prefix which can be just the buggy context (zero-shot) or combining buggy context
with a few examples of bug fixes (few-shot) as input to the model. Following the G&V paradigm,
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prior approach will sample the LLMs multiple times to obtain candidate patches. However, this
pipeline has the following limitations:

First, sampling from the same prefix/prompt multiple times can lead to many repeated patches due
to the probabilistic nature of sampling. This means the LLMs may waste a lot of compute and
time generating the same patches which have already been validated as incorrect by the testsuite.
Second, prompts provided to the LLMs for APR are created only from the original buggy code and
does not include any of the testcase information. Such information like the expected input and output
examples that can help LLMs understand the desired functionalities of the program are not provided.
Third, prior approaches also fail to consider the outputs produced by the generated incorrect patches.
Previously incorrect patches may fail on a particular corner case, which can be exposed by looking
at the test output and providing it to the LLM to address it in future patches.

Our Work. We propose conversational APR – a new paradigm of using LLMs for APR that di-
rectly leverages the testcase validation information to provide feedback to LLMs in a conversational
manner. In conversational APR, we interleave patch generation with validation where LLM first
generates a patch, we then validate it against testsuite to provide feedback and prompt LLM with
the new feedback information to generate a new patch. While in this paper we consider simple test-
case input/output/error validation feedback, one can apply conversational APR with a wild range
of possible feedback information such as human evaluation of the patch. We refer to the process of
generating a patch followed by validation as a turn where a conversation chain is made up of mul-
tiple turns in sequence. In the start of the conversation chain, we begin with an initial prompt and
sample the LLM to obtain a candidate patch. As we continue the conversation, the input given to the
LLM in each turn is a concatenation of all previously incorrect patches along with their associated
testcase feedback within the same conversation chain. A conversational chain is terminated once a
patch that passes all the testcases are found or the maximum chain length is reached (i.e., maximum
number of turns). In the latter case, we start a new conversation chain with the initial prompt again.

Compared with prior LLMs for APR tools which only use the buggy code snippet as input, conver-
sational APR incorporates patch validation in the form of validation feedback to help the model un-
derstand the reason why previously generated patches are incorrect. Such feedback can contain the
incorrect and expected test outputs or indicate if the generated patch contains compilation/runtime
errors. Furthermore, while prior LLMs for APR tools continuously sample from the same input, our
approach iteratively builds the input by including previously incorrect patches. As such, the LLM,
through its long context window, can recognize previous generations and avoid repeatedly gener-
ating an already validated incorrect patch. We evaluated our approach using 10 popular LLMs and
found that we not only improve the number of bugs fixed but also can arrive at the correct patch
faster compared with sampling-based baselines. Furthermore, we also evaluate the recently devel-
oped ChatGPT1, a dialogue focused LLM trained using reinforcement learning and highlight the
performance of conversational APR when using a LLM designed for conversation/dialogue.

2 BACKGROUND & RELATED WORK

2.1 LLMS FOR APR

To combat the reliance on using bug-fixing datasets to train learning-based APR tools, researchers
directly applied LLMs for APR without any fine-tuning. Xia & Zhang (2022) proposed AlphaRepair,
the first cloze-style APR to directly leverage LLMs for APR in a zero-shot setting by removing the
buggy line and replacing it with masked tokens. AlphaRepair then queries CodeBERT Feng et al.
(2020) to fill-in the masked tokens with the correct tokens to generate patches. Prenner et al. (2022)
investigated the ability for Codex Chen et al. (2021) to repair bugs via prompting to generate a
complete patched function given the original buggy function. Kolak et al. (2022) used LLMs to
generate a single line fix given only the original buggy prefix. Recently, Xia et al. (2023) conducted
an extensive study on directly applying LLMs for APR using several different repair settings.

The findings across these prior work are consistent in showing that directly using LLMs for APR
achieves comparable if not better performance compared to prior APR tools. However, these pro-
posed LLMs for APR techniques almost exclusively use sampling where patches are generated by

1While we perform repair using ChatGPT, no part of this paper is written by ChatGPT. :)
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sampling from the same input over and over again, leading to many repeated patches. Furthermore,
the inputs to the LLMs are only constructed from the original buggy function, missing the rich infor-
mation in the form of testcases. In this work, our conversational APR approach aims to bridge these
limitations in LLMs for APR by constructing new inputs based on prior incorrect patches to avoid
sampling repeated patches and providing the validation feedback to add another dimension of input
apart from original buggy code to help the model understand the semantic meaning of the program.

2.2 MULTI-STEP PROGRAM REASONING AND SYNTHESIS USING LLMS

A related research direction is in applying multi-step reasoning for code understanding and synthe-
sis. Nye et al. (2021) trains a LLM designed for program understanding by introducing the idea of a
“scratchpad” in which the LLM predicts the intermediate states of a program along with the final ex-
ecution results. Chen et al. (2022) extends the chain-of-thoughts Wei et al. (2022) prompting style in
NLP to propose program-of-thoughts where the prompt contains an explicit command to construct
the program step-by-step. However, these work still generates a complete result (i.e., final program
execution or code), albeit with intermediate results, in one shot, whereas our conversational APR
samples LLMs multiple times with different inputs to obtain one output plausible patch.

Different from one-shot methods, Austin et al. (2021) investigated the ability for LLMs to use human
feedback in a conversational manner for program synthesis by keeping a conversation of previously
generated code and correcting any mistakes using natural language feedback provided by human
developers. Nijkamp et al. (2022) manually created a multi-step synthesis dataset where each target
program is broken down into multiple smaller steps where only a few lines of code needs to be
generated. They then sample the model multiple times to iteratively complete each smaller step
and concatenate them together to form the final program. While these described techniques involve
iteratively sampling from the model with new feedback similar to a conversational manner, our work
can automatically create this feedback through testcase execution without any human-in-the-loop.

3 CONVERSATIONAL APR

We propose a conversational APR approach to prompt LLM patch generation by combining previ-
ously generated patches and validation feedback in a conversational manner. Contrasting with the
classic Generate and Validate (G&V) APR approach that first generates a large number of candidate
patches and then validate each one to find a list of plausible patches, conversational APR interleaves
generation and validation to provide immediate feedback for the new candidate patch. Different from
previous LLMs for APR tools that use sampling given the same prefix/context for each bug, con-
versational APR aims to incorporate feedback information after each generation as new context for
subsequent generations. Specifically, the feedback information includes both the incorrect generated
patch and its associated failed testcase information.

Conversational APR involves iteratively obtaining new candidate patches from the LLM by using
previously generated patches/validation results as feedback. We refer to this process as a turn, where
each turn includes three different steps: 1) construct a new prompt based on prior feedback 2) sam-
ple the model to produce a sample output function (candidate patch) 3) validate the sample output
function against testcases to obtain validation feedback. Multiple turns in sequence is defined as a
chain. The terminating conditions are that the sample output patch is able to pass all testcases (i.e., a
plausible patch is obtained) or the maximum number of turns (length of the chain) is reached. Note
that each turn (all three steps) are done automatically without needing any human-in-the-loop, this
allows conversational APR to be an automatic approach for program repair.

3.1 PIPELINE & EXAMPLE

Figure 1 shows an illustrative example of a conversation chain (multiple turns) and an overview
of the pipeline of the conversational APR approach. We first take in as input the original buggy
function and a set of testcases which contains some failing tests that expose the underlying bug.
In the example, the buggy function (sieve) attempts to use to sieve algorithm to calculate the list
of prime numbers below the integer input (max). The location of the bug occurs on line 4 where
the buggy function incorrectly uses any instead of all. This bug is exposed by the testcase of
sieve(2) = [2] where the buggy function incorrectly returns an empty array [].
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Turn 1:

Turn 2:

The following code is buggy.

def sieve(max):
    primes = []
    for n in range(2, max):
        if any(n%p for p in primes):
            primes.append(n)
    return primes

Please provide a fixed version.

def sieve(max):
    primes = []
    for n in range(2, max+1):
        if not any(n%p for p in primes):
            primes.append(n)
    return primes

The fixed version is still not correct.

def sieve(max):
    primes = []
    for n in range(2, max):
        if all(n%p for p in primes):
            primes.append(n)
    return primes

def sieve(max):
    primes = []
    for n in range(2, max+1):
        if all(n%p for p in primes):
            primes.append(n)
    return primes

sieve(4) returns [2, 4] but it should return [2, 3]

Please provide a fixed version.

The fixed version is still not correct.

sieve(2) returns [] but it should return [2]

Please provide a fixed version.
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def sieve(max):
    primes = []
    for n in range(2, max):
        if any(n%p for p in primes):
            primes.append(n)
    return primes

def sieve(max):
    primes = []
    for n in range(2, max):
        if all(n % p for p in primes):
            primes.append(n)
    return primes
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Figure 1: Overview and illustrative example of conversational APR
• Turn 1: We first create an initial prompt I using the original buggy function which contains

natural language descriptions to indicate that the function is buggy (The following code is
buggy) and the task we want the LLM to solve (Please provide a fixed version). We
then sample the model using the initial prompt I to obtain the first sample output function S1 .
The change is made to line 4 where the function in S1 negated the original if condition. We then
validate S1 against the list of tests and found that while the new patch is able to successfully pass
the previous failing test, it returns [2, 4] for sieve(4) when the correct output is [2, 3]. This
validation information F1 is collected as feedback to use during the next conversation turn.

• Turn 2: Different from turn 1, where the input to the LLM is just the initial prompt I , now we
provide the model also with the previously generated patch and its failing testcase. In short, we
construct the validation feedback F1 by using the failing testcase and indicate to the model that the
previous sample S1 is still not correct (The fixed version is still not correct) and
the new task (Please provide another fixed version). We then concatenate the initial
prompt, first sample output function and the validation feedback { I , S1 , F1 } together as the input
to the LLM. As such, the model is able to not only use the original buggy function but also use the
previously generated sample and its testcase feedback to generate a new patched function. Similar
to turn 1, we obtain S2 and F2 where the correct line 4 is obtained (switching any to all) but the
candidate patch function incorrectly reduced the upper range of the for loop by 1.

• Turn 3: Similar to turn 2, we first construct the new validation feedback F2 from the previous
failing test case. We then concatenate all previously sampled output along with its validation
feedback in sequence to produce { I , S1 , F1 , S2 , F2 }. Using this input, we then sample the LLM
again to produce the next candidate patch S3 . We observe that this candidate patch correctly fixes
the underlying bug and this is indicated by its validation F3 where it is able to pass all the testcases.
The conversational APR process is then terminated as we have obtained our plausible patch S3 .

Compared to prior LLM-based APR tools which samples from a pre-defined prompt, conversational
APR leverages the previously missing key feedback information of testcase results to prompt future
patch generations. The testcase feedback not only tells the LLM that the previous patches are incor-
rect (leading to more unique patches) but also provides input and output examples which helps the
model to understand the underlying functionality of the program (leading to more correct patches).
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Table 1: Evaluation LLM overview
Model #Parameters Context Window Training Strategy

CODEGEN-MONO 350M/2B/6B/16B 2048 Unsupervised CLM
CODEGEN-MULTI 350M/2B/6B/16B 2048 Unsupervised CLM
Codex 12B 4096 Unsupervised CLM

ChatGPT ∼175B ∼4000 Reinforcement Learning
from Human Feedback + CLM

3.2 DESIGN DECISIONS

In the above example illustrated in Figure 1, we show the overall pipeline of conversational APR.
However, there are different design decisions which can impact the performance of the approach:

Prompt engineering. Prompting has been shown to be an effective way of leveraging LLMs on var-
ious downstream tasks without needing any explicit fine-tuning. In conversational APR approach,
we follow the style of prior work Xia et al. (2023) in providing a short and concise prompt with
respect to the description of the input and the task we want to model to solve. One particular impor-
tant prompt constructing is validation feedback in providing the failing testcase to the LLM. In the
Figure 1 example, we provide a functional prompt that directly invokes the function and highlight
the discrepancy between output and expected testcase output. We refer to this as functional prompt
since it directly calls the function with input parameters similar to what one would do in code. In
Section 6.2, we compare this style of validation prompting with other methods including without
any testcase information to demonstrate the benefit of including validation feedback to the model.

Maximum chain length. Recall that a conversation chain refers to the continuous sequence of turns
to fix a bug. The conversation in Figure 1 has a chain length of 3. Along with finding a plausible
patch, a preset value for the maximum chain length is also a terminating condition since the LLM
used will have a maximum context window and cannot take in arbitrary length inputs. Once this
maximum chain length is reached, conversational APR will restart from the beginning (i.e., using
the initial prompt again) with a new chain conversation. The maximum chain length is a parameter
which controls how much history the LLM may receive. A maximum chain length of 1 refers to
the base case of sampling from the initial prompt over and over again, meaning the model does not
know any of the previously generated incorrect patches. A higher maximum chain length means the
model can see multiple previously failed patches, however this also may not be beneficial as it can
cause the LLM to repeat some of the earlier patches or get stuck on a particular implementation of
the function. In Section 6.2, we evaluate the effect of the chain length has on repair performance.

4 DATASETS

4.1 LLMS

We evaluate 10 different LLMs to demonstrate the effect of scaling behavior on our proposed conver-
sational APR approach and also to evaluate how different pre-training and model design contribute
to the overall effectiveness. Table 1 presents an overview of the studied LLMs. Column Model is the
model name, #Parameters indicates the number of model parameters, Context Window represents
the size of the context window, and Training Strategy refers to the training strategy used.

• CODEGEN Nijkamp et al. (2022). A family of autoregressive LLMs trained using Causal Lan-
guage Modeling (CLM) objective (next-token-prediction) ranging from 350M to 16B in parameter
size. CODEGEN is first trained on the open-source ThePile Gao et al. (2020), containing 22 diverse
text-based datasets. The models are then trained on BigQuery BigQuery, a dataset of open-source
code from 6 programming languages. We refer to these models (trained on ThePile then Big-
Query) as CODEGEN-MULTI. CODEGEN-MULTI is then further trained on a dataset containing
large amounts of Python GitHub code to produce CODEGEN-MONO. In our experiments, we
use CODEGEN-MONO for repair benchmarks in Python and CODEGEN-MULTI for repair bench-
marks in other programming languages but refer to them both as CODEGEN for simplicity.

• Codex Chen et al. (2021). A programming language focused autoregressive model based on the
GPT-3 architecture Brown et al. (2020). Codex is first initialized with GPT-3 weights from training
on natural language corpus and then fine-tuned using next-token-prediction on a large dataset of
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bitcount.py bitcount.java

fixed line fixed line

testcase

Figure 2: Example bug in both Python and Java in QuixBugs along with the testcases
code files. While Codex also contains a version which can take in suffix tokens (i.e., fill-in code
in the middle), for our experiments, we only use Codex by providing the prefix context.

• ChatGPT Schulman et al. (2022). A conversational-based LLM first initialized from GPT-3.5
model and then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) Ziegler
et al. (2019). ChatGPT is first fine-tuned based on supervised learning where human provides
example responses to prompts in the dataset. Using this fine-tuned model, a reward model is
then trained by sampling multiple outputs of the model from a given prompt and again using
a human to rank the outputs. The reward model is used in the reinforcement learning step where
Proximal Policy Optimization Schulman et al. (2017) is used to fine-tune ChatGPT. Different from
Codex and CODEGEN, ChatGPT through the usage of RLHF and fine-tuning data is designed for
conversation where the usage encourages a dialogue format. Note that much of the ChatGPT
model details are unknown to the public, therefore, we can only provide approximate values for
the number of parameters2 and context window size OpenAI (2022) according to verified sources.

4.2 BENCHMARKS

We use the QuixBugs Lin et al. (2017) repair benchmark to evaluate our proposed conversa-
tional APR approach. Quixbugs has been widely used to evaluate many repair tools including both
learning-based Ye et al. (2022); Zhu et al. (2021); Drain et al. (2021) and LLMs for APR Xia et al.
(2023); Kolak et al. (2022); Prenner et al. (2022) approaches. QuixBugs dataset contains the same 40
bugs and it associated correct patch in both Python and Java. These bugs are self-contained functions
based on classic algorithms and it usually only takes a single line change to fix. Each bug comes with
a set of testcases and can be used to evaluate any candidate patch generated. Figure 2 shows the bug
and testcases for the bitcount function in QuixBugs for both Java and Python. The bug occurs
inside the while loop where the code incorrectly uses the ˆ operator instead of & operator.

Out of the 40 bugs in QuixBugs, we further filter out 10 bugs which includes testcases that are
difficult to represent with our validation feedback prompt. For example, testcases for detect cycle
involves a graph as an input to the function. In total, we use 60 bugs (30 and 30 respectively for Java
and Python) for our evaluation.

5 EXPERIMENTAL SETUP

5.1 RESEARCH QUESTIONS

We aim to investigate the following research questions:

• RQ1: What is the effectiveness of applying conversational APR?
• RQ2: How do different components of conversational APR affect performance?

In RQ1, we first compare the performance of conversational APR with a baseline approach used
in prior LLMs for APR work where the patches are generated by continuously sampling from the
same initial prompt. We further investigate the difference in performance of different pre-training
strategies (e.g., ChatGPT vs. Codex). In RQ2, we dive deeper into the different parameters of con-
versational APR. Specifically, we evaluate how the length of the conversational chain and different
validation feedback prompts affect the performance.

2As ChatGPT is fine-tuned on GPT-3.5, we assume a similar number of parameters as GPT-3.5
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Table 2: Conversational APR performance (#c/#p is the number of correct/plausible patches)
Models QuixBugs-Python QuixBugs-Java

Sampling Conversational Sampling Conversational
#c/#p #tries #c/#p #tries #c/#p #tries #c/#p #tries

CODEGEN-350M 7 / 10 20.5 8 / 11 18.4 4 / 4 24.2 5 / 5 23.5
CODEGEN-2B 22 / 23 16.6 25 / 26 14.3 12 / 14 18.8 15 / 16 16.4
CODEGEN-6B 22 / 24 14.0 27 / 28 12.1 18 / 20 19.8 22 / 22 13.5
CODEGEN-16B 29 / 29 5.6 30 / 30 4.8 24 / 25 14.5 28 / 29 13.2
Codex 29 / 30 4.6 30 / 30 3.8 28 / 30 7.2 29 / 30 5.7

Table 3: ChatGPT and Codex comparison (correct/plausible patches)
Models QuixBugs-Python QuixBugs-Java

one try two tries three tries one try two tries three tries

Codex 16 / 16 21 / 21 24 / 24 11 / 12 18 / 19 21 / 22
ChatGPT 24 / 24 27 / 28 28 / 29 24 / 24 26 / 26 26 / 26

5.2 EVALUATION METRICS AND IMPLEMENTATION

Our evaluation metrics consist of the standard metrics used to evaluate APR tools: number of
plausible patches: passes all the testcases and correct patches: semantically equivalent to the ref-
erence developer patch. Additionally, since we sample LLMs, we also define tries as the number
of samples needed to obtain a plausible/correct patch. This metric is useful when comparing two
approaches/models that achieve similar number of bugs fixed, the one with fewer number of tries is
preferred as we want to limit the number of times we have to sample the LLM.

We implemented the patch generation using Hugging Face HuggingFace implementations of the
CODEGEN models and access Codex through the OpenAI API. Since ChatGPT is not open-sourced
and does not provide an API endpoint (like Codex), we manually input the prompt and extract the
outputs. For all models apart from ChatGPT, we use a default generation setting of nucleus sampling
with top p = 0.95, temperature = 1, 50 samples per bug with a maximum chain length of 3.

6 RESULTS

6.1 RQ1: CONVERSATIONAL APR EFFECTIVENESS

We first evaluate the effectiveness of applying conversational APR using validation feedback com-
pared to prior method of sampling given the same prompt without any feedback. Table 2 shows the
results on QuixBugs-Python and QuixBugs-Java. We observe that by applying our feedback driven
conversational APR, we are able to improve the # of correct and plausible patches for all unsupervis-
edly trained LLMs across all model sizes. Additionally, conversational APR is also able to decrease
the # of tries (# of samples) needed before obtaining the first plausible/correct patch. Compared
to traditional sampling method of producing patches, conversational APR is able to leverage the
model’s understanding of natural language feedback to indicate why the patch is incorrect. LLMs
can use this validation feedback information to generate new patches that try to pass the previ-
ously failed testcase. Furthermore, conversational APR also helps to reduce the number of repeated
patches from sampling using the same prompt over and over again. By using the large context size
of many state-of-the-art LLMs, conversational APR can use recently generated incorrect patches as
previous context to prompt the model to generate a new patch that is different.

ChatGPT evaluation. We now evaluate the performance of ChatGPT when using conversational
APR. Due to having to manually input and extract outputs from ChatGPT, we only use a single
conversation chain with at most 3 tries (i.e. maximum chain length of 3). We compare with the best
performing LLM of Codex from previous results under the same setting in Table 3. We observe
that compared to Codex, which is trained in an unsupervised manner, ChatGPT which is fine-tuned
using Reinforcement Learning from Human Feedback (RLHF) performed much better across the two
repair datasets. This improvement in result can be partially attributed to increase in model parameter
size, but we believe this is also due to the dialogue-based fine-tuning dataset used in ChatGPT.
Conversational APR relies on the model understanding the validation feedback to condition the
future generation in trying to generate a patch that passes the testcase. A more dialogue-oriented
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Figure 3: Number of plausible patches as we vary the maximum chain length
Table 4: Number of plausible patches with different Prompting Styles on QuixBugs-Python

Models no testcase natural language functional

CODEGEN-350M 9 11 11
CODEGEN-2B 20 25 26
CODEGEN-6B 24 27 28
CODEGEN-16B 27 30 30
Codex 29 30 30

model such as ChatGPT is well suited for this task as both the training data and algorithm contains
feedback driven loops. As ChatGPT and other dialogue-based LLMs become more popular, we
believe conversational APR can also be further improved through more usage of these LLMs.

6.2 RQ2: COMPONENT ANALYSIS

Maximum chain length. We first investigate the effect of different maximum chain lengths have on
the repair performance. Figure 3 shows the number of plausible patches when we vary the maximum
chain length from 1 to 6 for the 4 CODEGEN models. Recall from Section 3 that chain length
refers to the number of turns (each turn consist of generating and validating a new patch) in a
conversation chain. A maximum chain length of 1 is the simple sampling from the same initial
prompt baseline (used in prior LLMs for APR tools). As we increase chain length, the model has to
take in more and more previous context in the form of prior generations and feedback. We observe
that the performance increases as we start from a small chain length and reaches the maximum
around 3 or 4 and then decreases as chain length continues to increase. The decrease once we reached
a high chain length is because the context may be too much for the model to handle since it can
include multiple previously failed patches. We also observe that this decrease is more significant in
smaller models, where larger models are less affected by longer chain length, showing the ability
for larger models to better capture the long term context dependencies. This shows that the optimal
chain length to use for conversational APR can be dependent on the individual LLM used.

Feedback prompting style. We now evaluate the effect of the feedback prompting style used
in our conversational APR. Table 4 shows the number of plausible patches using different
validation prompts in QuixBugs-Python. Column no testcase does not include any testcase
feedback (only states that the patch is not correct), natural language describes the failing
testcase (e.g., when input is 2, the patch incorrectly returns [] but it should
return [2]) and functional which is the default prompting style discussed in Section 3. We ob-
serve that different prompting style does have an effect on the final performance of conversational
APR. Starting from no testcase prompt, we can improve performance by adding specific testcase
feedback information on top of telling the LLM that the patch is not correct. We also observe that
the functional prompting style, using the buggy/patch function name and passing parameters (see
Figure 1), performs the best. Functional prompting style conveys the failing testcase information in
a more concise and natural way by phrasing the testcase input and expected output relationship as a
function call.

7 CONCLUSION

We propose conversational APR, a new paradigm for program repair that interleaves patch gener-
ation with validation to provide immediate feedback for LLMs to better prompt future generated
patches. Compared to previous LLMs for APR approaches that only sample from the same input,
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conversational APR iteratively builds the input by concatenating previously incorrect patches and
validation feedback. This allows for the model to avoid generating previously incorrect patches and
also understand the semantic meaning of the function through validation feedback. Our evaluation
on 10 different LLMs shows the improvement of conversational APR over the baseline sampling
method used in prior LLMs for APR tools. Furthermore, we demonstrate the promising future of ap-
plying ChatGPT, a conversational/dialogue driven LLM, for conversational APR, or APR in general
for the first time.
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